An airplane is in level flight over Antarctica, where the magnetic field of the earth is mostly directed upward away from the ground. As viewed by a passenger facing toward the front of the plane, is the left or the right wingtip at higher potential? Does your answer depend on the direction the plane is flying?

Answers

Answer 1
Answer:

Answer:

It does not depend on direction of plane and the left windtips more potential

Explanation:

Because if the Fleming right hand rule is applied the the right han is pointed in the direction of flight, and the fingers are curled in the direction of the magnetic lines. Thus , the lines are vertical and so are pointing down, thus by the right hand rule, the electrons move to the left hand side of the plane, although the potentials are equal and opposite in direction


Related Questions

Explain how ultrasound devices use the Doppler effect to create images of body parts. HELP ME ASAP!! Will give brainliest answer!!
Optical astronomers need a clear, dark sky to collect good data. Explain why radio astronomers have no problem observing in the UK where it is often very cloudy.
The tension of a string is found to be 4050 N and the mass of 1 m of the string is 0.5 kg. What could be the velocity of a wave traveling in that string?
A space probe is launched from Earth headed for deep space. At a distance of 10,000 miles from Earth's center, the gravitational force on it is 600lb, what is the size of the force when it is at each of the following distances from the Earths surface?a. 20,000 milesb. 30,000 milesc. 100,000 miles
A jogger runs 4 km in 0.4 hr, then 8 km in 0.8 hr. What is the average speed of the jogger?

a trcuk weighs four times as much as a stationary car. if teh truck coasts into the car at 12 km/s and they stick toegther, what is their final velocity

Answers

Answer:

  v=9.6 km/s

Explanation:

Given that

The mass of the car =  m

The mass of the truck = 4 m

The velocity of the truck ,u= 12 km/s

The final velocity when they stick = v

If there is no any external force on the system  then the total linear momentum of the system will be conserve.

Pi = Pf

m x 0 + 4 m x 12 = (m + 4 m) x v

0 + 48 m = 5 m v

5  v  = 48

v=(48)/(5)\ km/s

v=9.6 km/s

Therefore the final velocity will be 9.6 km/s.

The normal is a line perpendicular to the reflecting surface at the point of incidence.

Answers

Answer:

True

Explanation:

The normal line is defined as the line which is perpendicular to the reflecting surface at the point where the incident ray meet with the reflecting surface.

The angle of incident is defined as the angle which is subtended by the incident ray with respect to the normal ray by consider the normal ray as the base line and angle is measured from the point where incident ray is incident on the reflecting surface of the mirror.

Similarly reflecting ray can be defined as the ray which is reflected after the incident of a ray and the angle subtended by the reflecting ray is measure with respect to normal ray by considering normal ray as a base line.

Therefore, the normal ray is the perpendicular line to the reflecting surface at the point of incidence.

What type of circuit measurement is made by placing a meters test leads in parallel with a deenergized component

Answers

If the component is DE-energized, meaning the whole device is
powered down, then the only thing you can measure with the meter-
probes on both ends of the component is its resistance.

If you have a fancy, expensive meter, then maybe you could measure
the component's capacitance or inductance.  I never had one of those. 

The normal meter measures volts, amps, and ohms.  If you touch
the probes to both ends of the component and the circuit is energized,
then you measure the voltage across the component.  If the circuit is
DE-energized, then you're measuring the component's resistance.

(Note:  You have to know which one you're measuring, and set up the
meter properly.  For example, if the circuit is energized and you try to
measure resistance, it's possible that you could fry your meter.)

A small child weighs 60 N. If mommy left him sitting on top of the stairs, which are 12 m high, how much energy does the child have!Please help ASAP

Answers

Answer:

6000 joules

Explanation:

I jus learned dis

Answer:6000j

Explanation:

Hope that helps

An aluminum rod is 10.0 cm long and a steel rod is 80.0 cm long when both rods are at a temperature of 15°C. Both rods have the same diameter. The rods are now joined end-to-end to form a rod 90.0 cm long. If the temperature is now raised from 15°C to 90°C, what is the increase in the length of the joined rod? The coefficient of linear expansion of aluminum is 2.4 × 10-5 K-1 and that of steel is 1.2 × 10-5 K-1.

Answers

Answer:

0.9 cm

Explanation:

The computation in the increase in the length of the joined rod is shown below:

As we know that

Increase in length = increase in the length of aluminum rod + increase in The length of steel rod

= 10cm * 2.4e - 5* (90-15) + 80cm* 1.2e - 5* (90-15)

= 0.9 cm

We simply added the length of aluminium rod and length of steel rod so that the length of the joined rod could come and the same is to be considered  

Final answer:

The increase in length of the joined rod when the temperature is raised from 15°C to 90°C is 0.090 cm.

Explanation:

To determine the increase in length of the joined rod when the temperature is raised from 15°C to 90°C, we need to use the formula for linear expansion: AL = aLAT, where AL is the change in length, AT is the change in temperature, and a is the coefficient of linear expansion. First, we need to calculate the change in temperature for each rod: ΔT = 90°C - 15°C = 75°C. For the aluminum rod, using a linear expansion coefficient of 2.4 × 10-5 K-1 and a length of 10.0 cm, we can calculate the change in length using the formula: ALaluminum = (2.4 × 10-5 K-1)(10.0 cm)(75°C) = 0.018 cm. Similarly, for the steel rod, using a linear expansion coefficient of 1.2 × 10-5 K-1 and a length of 80.0 cm, we can calculate the change in length: ALsteel = (1.2 × 10-5 K-1)(80.0 cm)(75°C) = 0.072 cm. Since the rods are joined end-to-end, the total change in length of the joined rod is the sum of the individual changes: ΔL = ALaluminum + ALsteel = 0.018 cm + 0.072 cm = 0.090 cm. Therefore, the increase in the length of the joined rod is 0.090 cm.

Learn more about linear expansion here:

brainly.com/question/35554239

#SPJ3

A ball of mass 0.7 kg flies through the air at low speed, so that air resistance is negligible. (a) What is the net force acting on the ball while it is in motionWhich components of the ball's momentum will be changed by this force? What happens to the x component of the ball's momentum during its flight? What happens to the y component of the ball's momentum during its flight? It decreases. What happens to the z component of the ball's momentum during its flight?

Answers

A) Net Force is -6.86N

B) The y component of momentum.

C) The x component of momentum should remain the same.

D)The y component of momentum decreases.

E)The z component of momentum should remain constant.

The following information should be considered:

(A)

The net force should be

= -9.8 (0.7)

= -6.86N

(B)

Due to the net force is on the y-axis, so only the vertical component of the momentum should be changed because to the force.

(C)

Because there is no resistance of air, the ball should be in projectilemotion problems, this represents hat the x component of the velocity remains constant, also does the mass.

D)

The y component of momentum reduced, this is due to gravity reduced the y component of the velocity.

E)Because there is no z component of the force there is no change in the z component of the momentum.

Learn more: brainly.com/question/9122916?referrer=searchResults

Final answer:

With negligible air resistance and low speed, the only significant net force on a 0.7 kg ball is gravity, affecting the ball's y component of momentum. The x component remains constant, and z component changes are not discussed without additional forces.

Explanation:

When a ball of mass 0.7 kg flies through the air at low speed with air resistance negligible, the net force acting on the ball while it is in motion is primarily due to gravity, which will be impacting the y component of the ball's momentum. The x component of the ball's momentum remains unchanged because no horizontal force is applied, while the y component changes due to gravity, and the z component would only change if there were forces acting in a direction out of the horizontal plane, which are not mentioned in the scenario. As for the Earth-ball system, momentum is conserved in the vertical direction because the system experiences no net external vertical force.