The value of di/dt from the given values of the solenoid electric field is;
di/dt = 7.415 A/s
We are given;
Number of turns; N = 450 per m
Radius; r = 1.17 cm = 0.0117 m
Electric Field; E = 8.2 × 10⁻⁶ V/m
Position of electric field; r' = 3.45 cm = 0.0345 m
According to Gauss's law of electric field;
∫| E*dl | = |-d∅/dt |
Now, ∅ = BA = μ₀niA
where;
n is number of turns
i is current
A is Area
μ₀ = 4π × 10⁻⁷ H/m
Thus;
E(2πr') = (d/dt)(μ₀niA) (negative sign is gone from the right hand side because we are dealing with magnitude)
Since we are looking for di/dt, then we have;
E(2πr') = (di/dt)(μ₀nA)
Making di/dt the subject of the formula gives;
di/dt = E(2πr')/(μ₀nA)
Plugging in the relevant values gives us;
di/dt = (8.2 × 10⁻⁶ × 2 × π × 0.0345)/(4π × 10⁻⁷ × 450 × π × 0.0117²)
di/dt = 7.415 A/s
Read more at; brainly.com/question/14003638
Answer:
Explanation:
From the question we are told that
The number of turns is
The radius is
The position from the center consider is x = 3.45 cm = 0.0345 m
The induced emf is
Generally according to Gauss law
=>
Where A is the cross-sectional area of the solenoid which is mathematically represented as
=>
=> ggl;
Here is the permeability of free space with value
=>
=>
producers
decomposers
heterotrophs
Answer:
Explanation:
Decomposers is the correct answer
Answer:
Decomposers is the right answer
Explanation:
Maggots are decomposers because they eat the dead bodys for energy
I don't know if the thing I wrote it truse so ya
To solve this problem it is necessary to apply the concepts related to the conservation of energy, through the balance between the work done and its respective transformation from the gravitational potential energy.
Mathematically the conservation of these two energies can be given through
Where,
W = Work
Final gravitational Potential energy
Initial gravitational Potential energy
When the spacecraft of mass m is on the surface of the earth then the energy possessed by it
Where
M = mass of earth
m = Mass of spacecraft
R = Radius of earth
Let the spacecraft is now in an orbit whose attitude is then the energy possessed by the spacecraft is
Work needed to put it in orbit is the difference between the above two
Therefore the work required to launch a spacecraft from the surface of the Eart andplace it ina circularlow earth orbit is
B) origin
C) rotation
D) temperature
A spectroscope analyses light to determine various parameters of celestial bodies. The missing parameter in this context is the 'temperature' of the celestial body (option D). The spectral lines, based on their pattern and strengths helps in determining this.
A spectroscope decomposes or breaks white light into its spectrum of colors, allowing scientists to study them and understand various aspects of celestial bodies. When scientists analyze the spectral line patterns, widths, strengths, and positions, they can discern essential parameters. These parameters include the speed and position of the celestial body, and more importantly, the correct answer to your question, its temperature (option D). This is because every element when heated, absorbs or emits light at characteristic wavelengths, that give us the 'spectral lines'. By studying these we can determine the temperature of the celestial body.
#SPJ2
acceleration of the ball?
Answer:
-54,200 m/s^2
Explanation:
a=(vf-vi)/t
Answer:
5N
Explanation:
Given parameters:
Original length = 22cm
Spring constant, K = 50N/m
New length = 32cm
Unknown
Force applied = ?
Solution:
The force applied on a spring can be derived using the expression below;
Force = KE
k is the spring constant
E is the extension
extension = new length - original length
extension = 32cm - 22cm = 10cm
convert the extension from cm to m;
100cm = 1m;
10cm will give 0.1m
So;
Force = 50N/m x 0.1m = 5N
To calculate the force used to stretch the spring, Hooke's Law is utilized, which leads to the conclusion that a force of 5 N was exerted to stretch the spring from its original length of 22 cm to a final length of 32 cm.
The force exerted by a spring is governed by Hooke's Law, which states that the force required to stretch or compress a spring by a certain distance is proportional to that distance. In this case, the spring constant, k, is given as 50 N/m and the spring is stretched from its original length of 22 cm to a final length of 32 cm. This represents a stretch, or displacement, of 10 cm (or 0.1 m when converted to the standard unit).
The force (F) can be calculated using Hooke's law: F = kx, where x is the displacement of the spring. Substituting the given values, the force amounts to F = (50 N/m) * (0.1 m) = 5 N. Therefore, the force used to stretch the spring to its final length of 32 cm is 5 N.
#SPJ11
B.) perception.
C.) similarity.
D.) continuity.
Answer:
C
Explanation:
Similarity