An advantage of J.J. Thomson's Plum Pudding Model was that it _____. A. was a much less expensive way to study atoms
B. simplified the calculations necessary to describe an atom
C. clearly explained where electrons were located in an atom
D. is much less expensive to bake a plum pudding than to look at an atom

Answers

Answer 1
Answer:

the answer is d i think


Answer 2
Answer:

Answer: plz mark brainliest

the answer is C

Explanation:

bc he used the plums or whatever's inside of the pudding to identify were electrons could be located and since it was a well known deserte many people where able to understand his analogy


Related Questions

How do you know if a boy like you?
We know that there is a relationship between work and mechanical energy change. Whenever work is done upon an object by an external force (or non-conservative force), there will be a change in the total mechanical energy of the object. If only internal forces are doing work then there is no change in the total amount of mechanical energy. The total mechanical energy is said to be conserved. Think of a real-life situation where we make use of this conservation of mechanical energy (where we can neglect external forces for the most part). Describe your example and speak to both the kinetic and potential energy of the motion.
A physics student standing on the edge of a cliff throws a stone vertically downward with an initial speed of 10.0 m/s. The instant before the stone hits the ground below, it is traveling at a speed of 30.0 m/s. If the physics student were to throw the rock horizontally outward from the cliff instead, with the same initial speed of 10.0 m/s, what is the magnitude of the velocity of the stone just before it hits the ground? Ignore any effects of air resistance.
As in problem 80, an 76-kg man plans to tow a 128000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that he instead attempts the feat by pulling the cable at an angle of 6.7° above the horizontal. The coefficient of static friction between his shoes and the runway is 0.87. What is the greatest acceleration the man can give the airplane? Assume that the airplane is on wheels that turn without any frictional resistance.
Modern wind turbines are larger than they appear, and despite their apparently lazy motion, the speed of the blades tips can be quite high-many times higher than the wind speed. A turbine has blades 56 m long that spin at 13 rpm .A. At the tip of a blade, what is the speed?B. At the tip of a blade, what is the centripetal acceleration?C. A big dog has a torso that is approximately circular, with a radius of 16cm . At the midpoint of a shake, the dog's fur is moving at a remarkable 2.5m/s .D. What force is required to keep a 10 mg water droplet moving in this circular arc?E. What is the ratio of this force to the weight of a droplet?

A nearsighted person has a far point of 40cm. What power spectacle lens is needed if the lens is 2cm from the eye

Answers

Answer:

The value is p =   - 2.63 \ Diopters

Explanation:

From the question we are told that  

      The value of the far point is  a =  40 \ cm  =  0.4 \  m

      The distance of the lens to the eye is  b =  2 \ cm = 0.02

Generally

        1 Diopter = >  1 m^(-1)

Generally the power spectacle lens needed is mathematically represented as

           p = (1)/(d_o )  + (1)/(d_i)

Here d_o is the object distance which for a near sighted person is d_o =  \infty

And  d_i is the image distance which is evaluated as

        d_i =  b - a

=>     d_i =  0.02 - 0.4

=>     d_i = -0.38 \  m

So

         p = (1)/(\infty )  + (1)/(-0.38)

=>      p = 0   - 2.63

=>      p =   - 2.63 \ Diopters

What is displacement?

Answers

Displacement means when you move something from its original position. Let's say you want to sit on a chair. You move the chair from where it was originally placed. That's displacement.

A stunt driver rounds a banked, circular curve. The driver rounds the curve at a high, constant speed, such that the car is just on the verge of skidding to the outside of the curve. A front view of a car driving on a banked curve. The cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car. Which forces are directly responsible for producing the car’s centripetal acceleration? Coriolis force centripetal force frictional force normal force gravitational force

Answers

Answer: C

Frictional force

Explanation:

The description of the question above is an example of a circular motion.

For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.

Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.

Therefore, the correct answer is option C - the frictional force.

When a 5.0 kg box is hung from a spring, the spring stretches to 50 mm beyond its relaxed length. (a) In an elevator accelerating upward at 2.0 m/s2 , how far does the spring stretch with the same box attached? (b) How fast and in which direction should the elevator accelerate for the spring stretch to be zero (that is, the spring returns to its relaxed length)?

Answers

The extension of the spring in the elevator is 60 mm.

For the extension of the spring to be zero, the elevator must be moving downwards under free fall.

The given parameters;

  • mass of the box, m = 5 kg
  • extension of the spring, x = 50 mm = 0.05 m

The spring constant is calculated as follows;

F = kx

mg = kx

k = (mg)/(x) \n\nk = (5 * 9.8)/(0.05) \n\nk = 980 \ N/m

The tension on the spring in an elevator accelerating upwards is calculated as follows;

T = mg + ma

T = m(g + a)

T = 5(9.8 + 2)

T = 59 N

The extension of the spring is calculated as follows;

T = kx\n\nx = (T)/(k) \n\nx = (59)/(980) \n\nx = 0.06 \ m\n\nx = 60 \ mm

For the extension of the spring to be zero, the elevator must be under free fall, such that the tension on the spring is zero.

For free fall, a = g

T = m(g - a) = 0

Learn more here:brainly.com/question/4404276

Answer:

a) the spring will stretch 60.19 mm with the same box attached as it accelerates upwards

b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²

Explanation:

Given that;

Gravitational acceleration g = 9.81 m/s²

Mass m = 5 kg

Extension of the spring X = 50 mm = 0.05 m

Spring constant k = ?

 we know that;

mg = kX  

5 × 9.81 = k(0.05)

k = 981 N/m

a)

Given that; Acceleration of the elevator a = 2 m/s² upwards

Extension of the spring in this situation = X1

Force exerted by the spring = F

we know that;

ma = F - mg

ma = kX1 - mg

we substitute

5 × 2 = 981 × X1 - (5 ×9.81 )

X1 = 0.06019 m

X1 = 60.19 mm

Therefore the spring  will stretch 60.19 mm with the same box attached as it accelerates upwards

B)

Acceleration of the elevator = a

The spring is relaxed i.e, it is not exerting any force on the box.

Only the weight force of the box is exerted on the box.

ma = mg

a = g

a = 9.81 m/s² downwards.

Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²

You received a shipment 20 days ago of 13 I for treatment of hyperthyroidism. What fraction of the original shipment would you still have with a half-life of 8.040 days for 31?

Answers

Answer:

we will have 17.8 % of the original value

Explanation:

As we know that by radioactive decay the total number of nuclei present at any instant of time is given as

N = N_o e^(-\lambda t)

here we need to find the fraction of total number of nuclei present

so we will have

(N)/(N_o) = e^(-\lambda t)

so we have

\lambda = (ln 2)/(8.040)

now we have

(N)/(N_o) = e^{-(ln 2)/(8.040)(20)}

(N)/(N_o) = 0.178

so we will have 17.8 % of the original value

Tarzan, whose mass is 96 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets go, his center of mass is at a height 2.1 m above the ground and the bottom of his dangling feet are at a height 1.3 above the ground. When he first hits the ground he has dropped a distance 1.3, so his center of mass is (2.1 - 1.3) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height 0.4 above the ground.Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground?

Answers

Answer:

5.05 m/s

Explanation:

The distance from the bottom of his feet to his center of mass is (when is hanging at rest) is 2.1 - 1.3 = 0.8 m. Assume he keeps the posture, as soon as his feet touches the ground, his center of mass is 0.8 m above the ground. This would mean that he has traveled a distance of 2.1 - 0.8 = 1.3 m vertically. Using the law of energy conservation for potential and kinetic energy, also let the ground be ground 0 for potential energy, we have the following mechanical conservation energy:

mgH = mgh + mv^2/2

Since he was hanging at rest, his initial kinetic energy at H = 2.1m must be 0. Let g = 9.81m/s2 and m be his mass, we can calculate for his velocity v at h = 0.8 m. First start by dividing both sides by m

gH = gh + v^2/2

v^2 = 2g(H - h)

v^2 = 2*9.81(2.1 - 0.8) = 25.506

v = √(25.506) = 5.05 m/s