Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:
n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:
hence, the frequency of the third overtone is 102 Hz
The total electric force exerted by point charges -3.5 μC and 3.5 μC on a point charge 4.0 μC is zero. This is because the forces due to each of these charges on the third charge are equal in magnitude but opposite in direction, hence they cancel each other completely.
The question asks for the magnitude and direction of the total electric force exerted by point charges -3.5 μC and 3.5 μC on a point charge 4.0 μC. This is related to Coulomb's Law, which describes the force between charged objects. Specifically, Coulomb's Law states that the force (F) between two point charges is directly proportional to the product of their charges (q1*q2) and inversely proportional to the square of the distance (r) between them. It also depends on the permittivity of free space (ε₀).
First, you would determine the force between each of the point charges and the third charge separately, and then superpose these forces to find the total force. The force in each case can be calculated using the equation F = k*|q1*q2|/r², where k is Coulomb's constant (8.99 * 10^9 N.m²/C²). You would need to make sure you take into account the signs of the charges when deciding the directions of the forces and when superposing the separate forces.
Assume upwards to be the positive direction. The 3.5 uC charge forces and -3.5 uC charge forces on the 4 uC charge would be opposite in direction (one downwards and one upwards) and identical in magnitude. Therefore, they will cancel each other out, and hence, the total electric force on the third charge (4 uC) will be zero.
#SPJ2
b) What are the magnitude and direction of the velocity of the car at t= 8 sec?
c) What is the magnitude and direction of cars acceleration at t=8 sec
Answer:
E = 9.4 10⁶ N / C, The field goes from the inner cylinder to the outside
Explanation:
The best way to work this problem is with Gauss's law
Ф = E. dA = qint / ε₀
We must define a Gaussian surface, which takes advantage of the symmetry of the problem. We select a cylinder with the faces perpendicular to the coaxial.
The flow on the faces is zero, since the field goes in the radial direction of the cylinders.
The area of the cylinder is the length of the circle along the length of the cable
dA = 2π dr L
A = 2π r L
They indicate that the distance at which we must calculate the field is
r = 5 R₁
r = 5 1.3
r = 6.5 mm
The radius of the outer shell is
r₂ = 10 R₁
r₂ = 10 1.3
r₂ = 13 mm
r₂ > r
When comparing these two values we see that the field must be calculated between the two housings.
Gauss's law states that the charge is on the outside of the Gaussian surface does not contribute to the field, the charged on the inside of the surface is
λ = q / L
Qint = λ L
Let's replace
E 2π r L = λ L /ε₀
E = 1 / 2piε₀ λ / r
Let's calculate
E = 1 / 2pi 8.85 10⁻¹² 3.4 10-12 / 6.5 10-3
E = 9.4 10⁶ N / C
The field goes from the inner cylinder to the outside
Answer:
The direction is due south
Explanation:
From the question we are told that
The energy of the electron is
The earths magnetic field is
Generally the force on the electron is perpendicular to the velocity of the elecrton and the magnetic field and this is mathematically reresented as
On the first uploaded image is an illustration of the movement of the electron
Looking at the diagram we can see that in terms of direction the magnetic force is
generally i cross k = -j
so the equation above becomes
This show that the direction is towards the south
B) d/√2
C) d/4
D) 2d
E) d/2
Answer:b
Explanation:
Given
Force of attraction is F when charges are d distance apart.
Electrostatic force is given by
where k=constant
and are charges
d=distance between them
In order to double the force i.e. 2F
divide 1 and 2 we get
wireequal to the strength of the Earth's magnetic field of about
5.0 x10^-5 T?
Answer:
The distance is 2 cm
Solution:
According to the question:
Magnetic field of Earth, B_{E} =
Current, I = 5.0 A
We know that the formula of magnetic field is given by:
where
d = distance from current carrying wire
Now,
d = 0.02 m 2 cm