Answer:
4572cm
Explanation: 1ft =30.48cm so you multiply the length value by 30.48
"Formation of colloids"
Please and thank you
Answer:
Colloids
There are two basic methods of forming a colloid: reduction of larger particles to colloidal size, and condensation of smaller particles (e.g., molecules) into colloidal particles. Some substances (e.g., gelatin or glue) are easily dispersed (in the proper solvent) to form a colloid; this spontaneous dispersion is called peptization. A metal can be dispersed by evaporating it in an electric arc; if the electrodes are immersed in water, colloidal particles of the metal form as the metal vapor cools. A solid (e.g., paint pigment) can be reduced to colloidal particles in a colloid mill, a mechanical device that uses a shearing force to break apart the larger particles. An emulsion is often prepared by homogenization, usually with the addition of an emulsifying agent. The above methods involve breaking down a larger substance into colloidal particles. Condensation of smaller particles to form a colloid usually involves chemical reactions—typically displacement, hydrolysis, or oxidation and reduction.
Answer:
11.29Kj
Explanation:
1. find moles of 33.8g of water
Molar mass of H2O: 18.02g/Mol
33.8/18.02= 1.88mols
2. find energy
1.88 x 6.02= 11.29Kj
Cs
At
F
B. NH3 < PH3< CH4
C. CH4 < PH3 < NH3
D. NH3 < CH4< PH3
E. PH3< NH3 < CH4
Answer:
B. NH3 < PH3< CH4
Explanation:
Hello,
In this case, taking into account that the boiling point of ammonia, methane and phosphorous trihydrate are -33.34 °C, -161.5 °C and -87.7 °C, clearly, methane has the lowest boiling point (most negative) and ammonia the greatest boiling point (least negative), therefore, ranking is:
B. NH3 < PH3< CH4
Best regards.
Answer:
two atoms of oxygen. For H2O, there is one atom of oxygen and two atoms of hydrogen.
Fe2+, cr4+, cl-, O2-
Answer:
{eq}Fe^{2+} {/eq} and {eq}I^- {/eq} forms {eq}FeI_2 {/eq}
{eq}Fe^{2+} {/eq} and {eq}S^{2-} {/eq} forms {eq}FeS {/eq}
{eq}Cr^{4+} {/eq} and...
Explanation:
Empirical formula:
The empirical formula gives the simple ratio of the different types of atoms in a compound. It is different from the molecular formula, which gives the exact number of each type of atom in a compound.
In basic chemistry, an empirical formula represents the simplest ratio of atoms in a compound. For example, the empirical formula for a compound formed by Fe2+ (Iron II) and O2- (Oxide) would be FeO. In this question, a compound composed of all these ions (Fe2+, Cr4+, Cl-, O2-) is unusual and there's insufficient information to determine a reasonable structure.
The question is asking for an empirical formula, which is a formula that gives the simplest whole number ratio of atoms of each element in a compound. The formula you're asked to provide involves the ions Fe2+ (Iron II), Cr4+ (Chromium IV), Cl- (Chloride), and O2- (Oxide).
Creating an empirical formula is a matter of balancing out the charges in order to get a neutral compound. For instance, if you wanted to combine Fe2+ and O2-, the empirical formula would be FeO because one Fe2+ ion would balance out one O2- ion to make an electrically neutral compound.
It's important to remember that the charge value of the ion helps you determine the necessary ratio to achieve neutrality. In essence, we need the amount of positive charge to equal the amount of negative charge in the empirical formula.
For a compound involving all these ions, unfortunately, it's not common or reasonable to have a compound with four different ions. Iron, chromium, and oxygen are transition metals that could form complex ions, but we do not have enough information in this question to determine the structure.
#SPJ2