A train station bell gives off a fundamental tone of 505 Hz as the train approaches the station at a speed of 27.6 m/s. If the speed of sound in air on that day is 339 m/s, what will be the apparent frequency of the bell to an observer riding the train

Answers

Answer 1
Answer:

Answer:

Apparent frequency of the bell to the observer is 546.12 Hz

Explanation:

The frequency of train bell (frequency of source) = 505 Hz

The speed of train (observer) = 27.6 m/s

The speed of sound in the air is (velocity of sound) = 339 m/s

The apparent frequency of the bell to the observer is calculated as follows:

Apparent frequency of bell to the observer.

= \text{frequency of source} * (Observer + velocity \ of \ sound )/( velocity \ of \ sound ) \n= 505 * (27.6 + 339)/(339) \n= 546.12 Hz


Related Questions

A grandfather clock keeps time using a pendulum consisting of a light rod connected to a small heavy mass. With a rod of length L, the period of oscillation is 2.00 s. What should the length of the rod be for the period of the oscillations to be 1.00 s?
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V. Use ϵ0 = 8.85×10⁻¹² C²/N⋅m². The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric.
To calculate the change in kinetic energy, you must know the force as a function of _______. The work done by the force causes the kinetic energy change.'
In college softball, the distance from the pitcher's mound to the batter is 43 feet. If the ball leaves the bat at 110 mph , how much time elapses between the hit and the ball reaching the pitcher?
An earthquake on the ocean floor produced a giant wave called a tsunami. The tsunami traveled through the ocean and hit a remote island, causing a lot of damage. Is the water that hit the island the same water that was above the earthquake on the ocean floor?A No, the water from above the earthquake stayed in the same place and only the energy was transferred.B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.C Yes, the water particles moved toward the island while the energy remained above the earthquake.

6. A barber raises his customer's chair by applying a force of 150 N to thehydraulic piston of area 0.01 m2. If the chair is attached to a piston with an
area of 0.1 m², how much force is needed to raise the customer?
STEP 1: List the known
and unknown values F =
A=
A,
STEP 2: Write the
correct equation
STEP 3: Insert the
known values into the
equation to solve for
the unknown value

Answers

Answer:

15N

Explanation:

F¹=150N

A=0.01m2²

F2=?

A2=0.1m²

P=F/A

F1/A2=F2/A1

150/0.1=F2/0.01

Am example of a good electrical isulator is
a.rubber
b.iron
c.copper
d.aluminum

Answers

The answer would be rubber because the other 3 are conductors. Plastic, cloth, and wood are also insulators.  Hope this helps!

A 60.0-kg boy is surfing and catches a wave which gives him an initial speed of 1.60 m/s. He then drops through a height of 1.57 m, and ends with a speed of 8.50 m/s. How much nonconservative work was done on the boy

Answers

Answer:

Work = 1167.54 J

Explanation:

The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:

Gain in K.E = Loss in P.E + Work

(0.5)(m)(Vf² - Vi²) - mgh = Work

where,

m = mass of boy = 60 kg

Vf = Final Speed = 8.5 m/s

Vi = Initial Speed = 1.6 m/s

g = 9.8 m/s²

h = height drop = 1.57 m

Therefore,

(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work

Work = 2090.7 J - 923.16 J

Work = 1167.54 J

Convert 56km/h to m/s.​

Answers

Explanation:

15.556 metres per second

In straight line motion, if the velocity of an object is changing at a constant rate, then its position is _________ and its acceleration is___________: O changing: zero O changing; changing O constant and non-zero; constant and non-zero O None of the above

Answers

Answer:

None of the above

It should be position is changing and acceleration is constant.

Explanation:

Since the velocity is changing, this means the object is moving, so the position must also be changing.

Acceleration is the change in velocity in time, if this change of velocity happens at a constant rate, the acceleration must be constant too.

So, for example, if the velocity were to stay the same (not changing), acceleration would be zero, because there wouldn't be a change in time on the velocity.

So in this case the answer sould be position is changing and acceleration is constant. But this isn't in the options so the correct answer is "None of the above"

Final answer:

In straight line motion, if velocity changes at a constant rate, then the position is changing and the acceleration is constant and non-zero. This is defined under the principles of kinematics and implies that as the velocity alters constantly, the object is in motion, hence its position is changing.

Explanation:

In straight line motion, if the velocity of an object is changing at a constant rate, then its position is changing and its acceleration is constant and non-zero. This condition is defined under the laws of physics, more specifically, under the study of kinematics.

The acceleration is constant because you're considering a situation where velocity is changing at a constant rate. In this case, the change in velocity is the acceleration, which is a constant and not zero. This situation is described by the kinematic equations for constant acceleration.

The position is changing because the object is moving. A change in position over time constitutes motion, and in this case, because the velocity (the rate of change of position) is changing, the object's position cannot be constant.

Learn more about Straight Line Motion here:

brainly.com/question/34648048

#SPJ3

Dr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme acceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.2 s and was brought jarringly back to rest in only 1 s. Calculate his (a) magnitude of acceleration in his direction of motion and (b) magnitude of acceleration opposite to his direction of motion. Express each in multiples of g (9.80 m/s2) by taking its ratio to the acceleration of gravity. g g

Answers

Answer:

    a = 5.53 g ,   a = -15g

Explanation:

This is an exercise in kinematics.

a) Let's look for the acceleration

         as part of rest v₀ = 0

          v = v₀ + a t

           a = v / t

           a = 282 / 5.2

          a = 54.23 m / s²

in relation to the acceleration of gravity

          a / g = 54.23 / 9.8

          a = 5.53 g

b) let's look at the acceleration to stop

         va = 0

         0 = v₀ -2 a y

         a = vi / y

         a = 282/2 1

         a = 141 m /s²

         a / G = 141 / 9.8

          a = -15g