Answer:
U/U₀ = 2
(factor of 2 i.e U = 2U₀)
Therefore, the energy stored in the capacitor is doubled when the plate separation is doubled while the capacitor has been disconnected
Explanation:
Energy stored in a capacitor can be expressed as;
U = 0.5CV^2 = Q^2/2C
And
C = ε₀ A/d
Where
C = capacitance
V = potential difference
Q = charge
A = Area of plates
d = distance between plates
So
U = Q^2/2C = dQ^2/2ε₀ A
The initial energy of the capacitor at d = d₀ is
U₀ = Q^2/2C = d₀Q^2/2ε₀ A ....1
When the plate separation is increased after the capacitor has been disconnected, the charge Q of the capacitor remain constant.
The final energy stored in the capacitor at d = 2d₀ is
U = 2d₀Q^2/2ε₀ A ...2
The factor U/U₀ can be derived by substituting equation 1 and 2
U/U₀ = (2d₀Q^2/2ε₀ A)/( d₀Q^2/2ε₀ A )
Simplifying we have;
U/U₀ = 2
U = 2U₀
Therefore, the energy stored in the capacitor is doubled when the plate separation is doubled while the capacitor has been disconnected.
producers
decomposers
heterotrophs
Answer:
Explanation:
Decomposers is the correct answer
Answer:
Decomposers is the right answer
Explanation:
Maggots are decomposers because they eat the dead bodys for energy
I don't know if the thing I wrote it truse so ya
Answer:
Length = 2.453 m
Explanation:
Given:
Resistivity of the wire (ρ) = 1 × 10⁻⁶ Ω-m
Diameter of the wire (d) = 0.250 mm = 0.250 × 10⁻³ m
Resistance of the wire (R) = 50 Ω
Length of the wire (L) = ?
The area of cross section is given as:
We know that, for a constant temperature, the resistance of a wire is directly proportional to its length and inversely proportional to its area of cross section. The constant of proportionality is called the resistivity of the wire. Therefore,
Expressing the above in terms of length 'L', we get:
Plug in the given values and solve for 'L'. This gives,
Therefore, length of No. 30 wire (of diameter 0.250 mm) is 2.453 m.
Answer:
Part a)
Part b)
Part c)
Part d)
Explanation:
Part a)
When cabin is fully loaded and it is carried upwards at constant speed
then we will have
net tension force in the rope = mg
now it is partially counterbalanced by 400 kg weight
so net extra force required
now power required is given as
Part b)
When empty cabin is descending down with constant speed
so in that case the force balance is given as
now power required is
Part c)
If no counter weight is used here then for part a)
now power required is
Part d)
Now in part b) if friction force of 800 N act in opposite direction
then we have
now power is
To find the components of the velocity vector, you can use trigonometry. The north component is calculated using the sine function and the west component is calculated using the cosine function. After 2.20 hours, the distance traveled north and west can be found by multiplying the velocity components by the time.
To find the components of the velocity vector in the northerly and westerly directions, we can use trigonometry. The velocity vector is 835 km/h and is traveling in a direction 41.5° west of north. To find the north component, we can use the sine function: North component = velocity * sin(angle). To find the west component, we can use the cosine function: West component = velocity * cos(angle).
After 2.20 hours, we can find the distance traveled north and west by multiplying the velocity components by the time: Distance north = North component * time and Distance west = West component * time.
Let's calculate the values:
#SPJ3
B.)Plants that have broad leaves to capture sunlight and long roots to penetrate the soil.
C.)Animals with thin fur that allows them to get rid of heat efficiently.
D.)Animals with long tongues for capturing prey and sticky pads for climbing trees.
Answer:
the awnser is A becuse the hair help.
Wave speed = (wavelength) x (frequency)
We know the wavelength, but we don't know the frequency. How can we find the frequency ? "Here frequency frequency."
We know the period, and frequency is just (1 / period). So . . .
Wave speed = (wavelength) / (period)
Wave speed = (2.1 meters) / (9.4 seconds)
Wave speed = (2.1 / 9.4) m/s
Wave speed = 0.223 m/s