5. The partition coefficient of Compound A is 7.5 in dichloromethane (a.k.a. methylene chloride) with respect to water. a. If 5 grams of Compound A were dissolved in 100 mL of water, how much of Compound A would be extracted with four 25-mL portions of dichloromethane

Answers

Answer 1
Answer:

Answer:

4.93g are extracted

Explanation:

Partition coefficient (P) is defined as the ratio of solute dissolved in the organic solvent and the solute dissolved in the aqueous phase.

That is:

P = 7.5 = Concentration in dichloromethane / Concentration in water.

Knowing this, in the first extraction with 25mL of dichloromethane you will extract:

7.5 = (X/25mL) / (5g - X) / 100mL

Where X is the amount of compound A that is extracted.

7.5 = 100X / (125 - 25X)

937.5 - 187.5X = 100X

937.5 = 287.5X

3.26g of A are extracted in the first extraction.

In water will remain 5g - 3.26g = 1.74g

In the second extraction you will extract:

7.5 = (X/25mL) / (1.74g - X) / 100mL

7.5 = 100X / (43.5 - 25X)

326.25 - 187.5X = 100X

326.25 = 287.5X

1.13g are extracted in the second extraction.

And remain: 1.74g - 1.13g = 0.61g

In the third extraction you will extract:

7.5 = (X/25mL) / (0.61g - X) / 100mL

7.5 = 100X / (15.25 - 25X)

114.375 - 187.5X = 100X

114.375 = 287.5X

0.40g are extracted in the third extraction.

And remain: 0.61g - 0.40g = 0.21g

In the second extraction you will extract:

7.5 = (X/25mL) / (0.21g - X) / 100mL

7.5 = 100X / (5.25 - 25X)

39.375 - 187.5X = 100X

39.375 = 287.5X

0.14g are extracted in the fourth extraction.

Thus, after the three extractions you will extract: 0.14g + 0.40g + 1.13g + 3.26g = 4.93g are extracted

Answer 2
Answer:

Final answer:

The process involves using the partitioncoefficient to determine how much of Compound A will prefer the dichloromethane solvent over the water. Following a calculation process through four rounds of extraction, it is concluded that approximately 4.999g of Compound A will be extracted using four 25mL portions of dichloromethane.

Explanation:

The partition coefficient of a compound is a measure of how much it prefers one solvent over another. Given that the partition coefficient of Compound A is 7.5 in dichloromethane with respect to water, we can predict how much of this compound could be extracted using four separate 25 mL portions of dichloromethane.

Here's the step-by-step calculation process:

  1. We start with 5 grams of Compound A in 100 mL of water. Given the partition coefficient, in the initial phase, 5/(7.5+1)=0.625g remains in water and 7.5/8.5*5=4.375g goes into the dichloromethane.
  2. After one extraction with 25ml of dichloromethane, the amount left in the water will be 0.625g*1/(7.5+1)=0.069g.
  3. After the second extraction: 0.069g*1/(7.5+1) = 0.008g.
  4. After the third extraction: 0.008g*1/(7.5+1) = 0.0009g.
  5. After the fourth extraction: 0.0009g*1/(7.5+1) = 0.0001g.

In total, around 4.999g of compound A will be extracted using four 25mL portions of dichloromethane.

Learn more about Partition Coefficient here:

brainly.com/question/31607446

#SPJ3


Related Questions

What is planck's theory?
Calculate the percent saturated fat in the total fat in butter
Grunge is a rock style from Detroit. True False
Question 6 (5 points)In comparison to steam, ice hasA) less kinetic energy.B)more kinetic energy.more total energy.D) the same total energy.
What is anology? What is microscope?​

Conversion of minus 1 coulomb meter in debye

Answers

Answer:

-1 Coulomb meter = -2.997 × 10²⁹ Debye

Explanation:

Given:

Coulomb meter = -1 CM

Find:

In debye

Computation:

We know that,

1 Coulomb meter = 299,792,458,178,090,000,000,000,000,000 Debye

So,

-1 Coulomb meter = -299,792,458,178,090,000,000,000,000,000 Debye

-1 Coulomb meter = -2.997 × 10²⁹ Debye

A 51.9g sample of iron, which has a specific heat capacity of 0.449·J·g?1°C?1, is put into a calorimeter (see sketch at right) that contains 300.0g of water. The temperature of the water starts off at 19.0°C. When the temperature of the water stops changing it's 20.3°C. The pressure remains constant at 1atm. Calculate the initial temperature of the iron sample. Be sure your answer is rounded to 2 significant digits.

Answers

Answer:

the initial temperature of the iron sample is Ti = 90,36 °C

Explanation:

Assuming the calorimeter has no heat loss to the surroundings:

Q w + Q iron = 0

Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )  

Assuming Q= m*c*( T- Tir)  

mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0

 Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )

 Tir = 90.36 °C

Note :

- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C  

- We assume no reaction between iron and water

Final answer:

To calculate the initial temperature of the iron sample, use the equation q = m * c * T, where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, and T is the change in temperature which is  90.36 °C

Explanation:

To calculate the initial temperature of the iron sample, we can use the equation:

q = m * c * T

Where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity, andT is the change in temperature. In this case, we know the mass of the iron sample, the specific heat capacity of iron, and the change in temperature of the water. By rearranging the equation, we can solve for the initial temperature of the iron sample.

Thus,

Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )

Tir = 90.36 °C

Learn more about Calculating initial temperature here:

brainly.com/question/30370638

#SPJ12

Rhodium has an atomic radius of 0.1345 nm and density of 12.41 gm/cm3 . Determine whether it has an FCC or BCC crystal structure.

Answers

Answer:

FCC.

Explanation:

Hello,

In this case, since the density is defined as:

\rho =(n*M)/(Vc*N_A)

Whereas n accounts for the number of atoms per units cell (2 for BCC and 4 for FCC), M the atomic mass of the element, Vc the volume of the cell and NA the Avogadro's number. Thus, for both BCC and FCC, the volume of the cell is:

Vc_(BCC)=((4r)/(√(3) ) )^3=((4*0.1345x10^(-7)cm)/(√(3) ) )^3=2.997x10^(-23)cm^3\n\nVc_(FCC)=(2√(2)r)^(3)  =(2√(2) *0.1345x10^(-7)cm)^3=5.506x10^(-23)cm^3

Hence, we compute the density for each crystal structure:

\rho _(BCC)=(n_(BCC)*M)/(Vc_(BCC)*N_A)=(2*102.9g/mol)/(2.337x10^(-23)cm^3*6.022x10^(23)/mol) =14.62g/cm^3\n\n\rho _(FCC)=(n_(FCC)*M)/(Vc_(FCC)*N_A)=(4*102.9g/mol)/(5.506x10^(-23)cm^3*6.022x10^(23)/mol) =12.41g/cm^3

Therefore, since the density computed as a FCC crystal structure matches with the actual density, we conclude rhodium has a FCC crystal structure.

Regards.

The equation represents the decomposition of a generic diatomic element in its standard state. 12X2(g)⟶X(g) Assume that the standard molar Gibbs energy of formation of X(g) is 4.25 kJ·mol−1 at 2000. K and −63.12 kJ·mol−1 at 3000. K. Determine the value of K (the thermodynamic equilibrium constant) at each temperature.

Answers

Answer:

K^(2000K)=0.774\n\nK^(3000K)=12.56

Explanation:

Hello,

In this case, considering the reaction, we can compute the Gibbs free energy of reaction at each temperature, taking into account that the Gibbs free energy for the diatomic element is 0 kJ/mol:

\Delta _rG=\Delta _fG_(X)-(1)/(2) \Delta _fG_(X_2)=\Delta _fG_(X)

Thus, at 2000 K:

\Delta _rG=\Delta _fG_(X)^(2000K)=4.25kJ/mol

And at 3000 K:

\Delta _rG=\Delta _fG_(X)^(3000K)=-63.12kJ/mol

Next, since the relationship between the equilibrium constant and the Gibbs free energy of reaction is:

K=exp(-(\Delta _rG)/(RT) )

Thus, at each temperature we obtain:

K^(2000K)=exp(-(4250J/mol)/(8.314(J)/(mol* K)*2000K) )=0.774\n\nK^(3000K)=exp(-(-63120J/mol)/(8.314(J)/(mol* K)*3000K) )=12.56

In such a way, we can also conclude that at 2000 K reaction is unfavorable (K<1) and at 3000 K reaction is favorable (K>1).

Best regards.

A chemist prepares a solution of magnesium fluoride MgF2 by measuring out 0.00598μmol of magnesium fluoride into a 50.mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in /μmolL of the chemist's magnesium fluoride solution. Round your answer to 2 significant digits.

Answers

Answer:

0,12 μmol/L of MgF₂

Explanation:

Preparation of solutions is a common work in chemist's life.

In this porblem says that you measure 0,00598 μmol of MgF₂ in 50,0 mL of water and you must calculate concentration in  μmol/L

You have 0,00598 μmol but not Liters.

To obtain liters you sholud convert mL to L, knowing 1000mL are 1 L, thus:

50,0 mL (1L/1000mL) = 0,05 L of water.

Thus, concentration in  μmol/L is:

0,00598 μmol / 0,05 L = 0,12 μmol/L -The problem request answer with two significant digits-

I hope it helps!

Which chemical equation follows the law of conservation of mass?

Answers

The chemical equation presented in option A follows the law of conservation of mass.

The principle of conservation of mass states, mass can neither be created nor destroyed but can be transformed from one form to another.

A reaction that follows the law of conservation of mass,  must have equal number of moles each elements in reactants side and products side.

Only option A follows the law of conservation of mass;

2LiOH \ + \ + H_2CO_3 \ ---> \ Li_2CO_3 \ + \ 2H_2O

Thus, we can conclude that the chemical equation presented in option A follows the law of conservation of mass.

Learn more here:brainly.com/question/13383562

Answer:

Option A

Explanation:

The expression that obeys the law of conservation of mass is choice A;

         2LiOH  +  H₂CO₃   →   Li₂CO₃  + 2H₂O

According to the law of conservation of mass; "in a chemical reaction, matter is neither created nor destroyed". By this law, mass is usually conserved.

The equation shows that mass is conserved because the number of moles of each specie is found on both sides

                                                Number of moles

                                 Li                   O                  H              C

Reactants                 2                    5                   4               1

Products                   2                    5                   4               1

This shows that mass is indeed conserved.