Answer:
balanced............
b. Some of the vapor initially present will condense.
c. The pressure in the container will be 100. mm Hg.
d. Only octane vapor will be present.
e. Liquid octane will be present.
Answer:
the final pressure (108.03 mmHg ) inside the container at 339 K is more than the vapor pressure of liquid octane (100 mmHg) at 339 K.
Hence,
b. Some of the vapor initially present will condense.
e. Liquid octane will be present.
Explanation:
Given that;
The vapor pressure of liquid octane, C8H18, is 100 mm Hg at 339 K
Initial volume of the container, V1 = 537 mL
Initial vapor pressure, P1 = 68.0 mmHg
Final volume of the container, V2 = 338 mL
Let us say that the final vapor pressure = P2
From Boyle's law,
P2V2 = P1V1
P2 * 338 = 68.0 * 537
338P2 = 36516
P2 = 36516 / 338
P2 = 108.03 mmHg
Thus, the final pressure (108.03 mmHg ) inside the container at 339 K is more than the vapor pressure of liquid octane (100 mmHg) at 339 K.
Hence,
b. Some of the vapor initially present will condense.
e. Liquid octane will be present.
2. A carbon-carbon bond with a bond order of 3
3. A carbon-carbon bond with a bond order of O
4. carbon-carbon bond with a bond order of 1
Answer:
Bond length of C=C is largest(134 pm) because both the carbon atoms have same electronegativity. In case of C=O. and C=N carbon is bonded to highly electronegative atoms so bond length is shoreter as compared to C=C
Answer:
2.14x10¹⁹ atoms of Cu were deposited
Explanation:
The increased in mass of the glass slide is due the deposition of copper.
That means the mass of copper deposited is 2.26mg = 2.26x10⁻³g Cu
To know the copper atoms we need to convert this mass to moles of Cu using molar mass of copper (63.546g/mol), and these moles are converted to atoms using Avogadro's number (6.022x10²³ atoms = 1 mole)
Moles Cu:
2.26x10⁻³g Cu * (1 mol / 63.546g) = 3.556x10⁻⁵ moles Cu
Atoms Cu:
3.556x10⁻⁵ moles Cu * (6.022x10²³ atoms / 1 mole) =
2.14x10¹⁹ atoms of Cu were deposited
Answer : The concentration of remains at equilibrium will be, 0.37 M
Explanation : Given,
Equilibrium constant = 4.90
Initial concentration of = 2.00 M
The balanced equilibrium reaction is,
Initial conc. 2 M 0 0
At eqm. (2-2x) M x M x M
The expression of equilibrium constant for the reaction will be:
Now put all the values in this expression, we get :
By solving the term 'x' by quadratic equation, we get two value of 'x'.
Now put the values of 'x' in concentration of remains at equilibrium.
Concentration of remains at equilibrium =
Concentration of remains at equilibrium =
From this we conclude that, the amount of substance can not be negative at equilibrium. So, the value of 'x' which is equal to 1.291 M is not considered.
Therefore, the concentration of remains at equilibrium will be, 0.37 M