Answer:
Mass PbI2 = 18.19 grams
Explanation:
Step 1: Data given
Volume solution = 99.8 mL = 0.0998 L
mass % KI = 12.0 %
Density = 1.093 g/mL
Volume of the other solution = 96.7 mL = 0.967 L
mass % of Pb(NO3)2 = 14.0 %
Density = 1.134 g/mL
Step 2: The balanced equation
Pb(NO3)2(aq) + 2 KI(aq) ⇆ PbI2(s) + 2 KNO3(aq)
Step 3: Calculate mass
Mass = density * volume
Mass KI solution = 1.093 g/mL * 99.8 mL
Mass KI solution = 109.08 grams
Mass KI solution = 109.08 grams *0.12 = 13.09 grams
Mass of Pb(NO3)2 solution = 1.134 g/mL * 96.7 mL
Mass of Pb(NO3)2 solution = 109.66 grams
Mass of Pb(NO3)2 solution = 109.66 grams * 0.14 = 15.35 grams
Step 4: Calculate moles
Moles = mass / molar mass
Moles KI = 13.09 grams / 166.0 g/mol
Moles KI = 0.0789 moles
Moles Pb(NO3)2 = 15.35 grams / 331.2 g/mol
Moles Pb(NO3)2 = 0.0463 moles
Step 5: Calculate the limiting reactant
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
Ki is the limiting reactant. It will completely be consumed ( 0.0789 moles). Pb(NO3)2 is in excess. There will react 0.0789/2 = 0.03945 moles. There will remain 0.0463 - 0.03945 = 0.00685 moles
Step 6: Calculate moles PbI2
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
For 0.0789 moles KI we'll have 0.0789/2 = 0.03945 moles PbI2
Step 7: Calculate mass of PbI2
Mass PbI2 = moles PbI2 * molar mass PbI2
Mass PbI2 = 0.03945 moles * 461.01 g/mol
Mass PbI2 = 18.19 grams
Answer:
Explanation:
Hello,
In this case, we write the reaction again:
In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:
Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:
But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:
Best regards.
When a student is warming a chemical in a container using a special burner, it is very important to focus on safety by using the right safety tools.
First, the student needs to wear the right safety clothes like a lab coat, gloves, and goggles to protect themselves from getting splashed or hurt by chemicals. A lab coat stops chemicals from touching the skin, gloves keep the hands safe, and safety goggles protect the eyes from chemicals
and hot things.
Furthermore, using a fume hood is necessary to make sure there is enough fresh air circulating and to remove any dangerous fumes or gases that might be released while heating things up.
Read more about safety equipment here:
#SPJ3
Answer:The student should be wearing a lab coat or maybe an apron to prevent chemicals from spilling or exploding onto their clothes, I do recommend a lab coat better though because it can protect your skin better. Next, make sure while messing with chemicals you are always wearing goggles, if you are not wearing them there is a chance that after touching chemicals you could touch your eyes. And that brings me to washing your hands straight away after messing with chemicals. You could also wear gloves and just take them off when you're done but if you don't have clean hands afterward you could always put the chemicals all over your skin. But in case you do touch your eyes there is always an emergency eyewash station somewhere in the lab room. And if you are to get Chemicals on your skin, in your hair, on your clothes, or to be on fire, there shall be a shower somewhere to get rid of that. But if you read the instructions or listen closely to the teacher you shall have no problem.
Explanation:
I kinda got off topic
C(s)+O2(g)→CO2(g)
2MnO−4(aq)+5SO2(g)+2H2O(l)→2Mn2+(aq)+5SO2−4(aq)+4H+(aq)
Answer : The volume required to fill the gas tank is, 45.42 liters
Explanation :
Conversion used for gallon to liters are:
As we are given the volume of gas tank in gallon is, 12.0 gal
Now we have to determine the volume of gas tank in liters.
As, 1 gallon = 3.785 liter
So, 12.0 gallon =
Therefore, the volume required to fill the gas tank is, 45.42 liters
O B. To lower the activation energy of a reaction
O C. To increase the kinetic energy of the reactants
O D. To shift the equilibrium position of a reaction
Answer:
To lower the activation energy of a reaction
Explanation:
i just took the test and got it right ...... i hope this helps :)
Answer:
2C₆H₁₄ + 19O₂ → 12CO₂ + 14H₂O
α =2
β = 19
γ = 12
δ = 14
53.2moles of O₂
Explanation:
Proper equation of the reaction:
αC₆H₁₄ + βO₂ → γCO₂ + δH₂O
This is a combustion reaction for a hydrocarbon. For the combustion of a hydrocarbon, the combustion equation is given below:
CₓHₙ + (x + )O₂ → xCO₂ + H₂O
From the given combustion equation, x = 6 and n = 14
Therefore:
β = x + = 6 + = 6 + 3.5 = 9
γ = 6
δ = = = 7
The complete reaction equation is therefore given as:
C₆H₁₄ + 9O₂ → 6CO₂ + 7H₂O
To express as whole number integers, we multiply the coefficients through by 2:
2C₆H₁₄ + 19O₂ → 12CO₂ + 14H₂O
Problem 2
From the reaction:
2 moles of hexane are required to completely react with 19 moles of O₂
∴ 5.6 moles of hexane would react with k moles of O₂
This gives: 5.6 x 19 = 2k
k =
k = 53.2moles of O₂
Answer: The net ionic equation for the given reaction is
Explanation:
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are the ions which do not get involved in a chemical equation. It is also defined as the ions that are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of hydrochloric acid and potassium sulfite is given as:
Ionic form of the above equation follows:
As, potassium and chloride ions are present on both the sides of the reaction, thus, it will not be present in the net ionic equation.
The net ionic equation for the above reaction follows:
Hence, the net ionic equation for the given reaction is written above.
The net ionic equation for the reaction between hydrochloric acid and potassium sulfite is H+ (aq)+ SO3^2- (aq) → H+ (aq) + SO3^2- (aq), following the solubility trends of sulfates and sulfites under standard conditions.
The reaction between excess hydrochloric acid (HCl) and potassium sulfite (K2SO3) is a typical acid-base neutralization reaction. In the initial step, potassium sulfite dissociates into its ions in the aqueous solution:
K2SO3 (aq) → 2K+ (aq) + SO3^2- (aq)
Hydrochloric acid, being a strong acid, also dissociates completely:
HCl (aq) → H+ (aq) + Cl- (aq)
The hydrogen ion from the acid then reacts with the sulfite ion to form sulfuric acid and water, creating a net ionic equation :
2H+ (aq) + SO3^2- (aq) → H2SO3 (aq)
Because of the solubility trends of sulfates and sulfites under standard conditions, the sulfuric acid produced also dissociates into ions:
H2SO3 (aq) → 2H+ (aq) + SO3^2- (aq)
Therefore, the overall net ionic equation is:
H+ (aq)+ SO3^2- (aq) → H+ (aq) + SO3^2- (aq)
#SPJ3