An electromagnetic wave is traveling the +y direction. The maximum magnitude of the electric field associated with the wave is Em, and the maximum magnitude of the magnetic field associated with the wave is Bm. At one instant, the electric field has a magnitude of 0.25 Em and points in the +x direction. At this same instant, the wave's magnetic field has a magnitude which is ... and it is in the ... direction.

Answers

Answer 1
Answer:

Answer:

0.83x10^-9 T

Direction is towards +z axis.

Explanation:

E = cB

E = magnitude of electrical 0.25 Em

c = speed of light in a vacuum 3x10^8 m/s

Therefore,

B = E/c = 0.25 ÷ 3x10^8

B = 0.83x10^-9 T

Magnetic fueld of a EM wave acts perpendicularly to its electric field, therefore it's direction is towards the +Z axis


Related Questions

Two children, Ferdinand and Isabella, are playing with a waterhose on a sunny summer day. Isabella is holding the hose in herhand 1.0 meters above the ground and is trying to spray Ferdinand,who is standing 10.0 meters away. I know so far that she cannotspray Ferdinand at the current position and with the curreentspeed of spray. I got stuck inthe following question:To increase the range of the water, Isabellaplaces her thumb on the hose hole and partially covers it. Assuming that the flow remains steady, what fraction f of the cross-sectional area of the hose hole does shehave to cover to be able to spray her friend?Assume that the cross section of the hoseopening is circular with a radius of 1.5 centimeters.
Coherent light with wavelength 598 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance of 4.84 mm from the center of the central bright fringeFor what wavelength of light will thefirst-order dark fringe be observed at this same point on thescreen?Express your answer in micrometers(not in nanometers).
A small ball of mass m is held directly above a large ball of mass M with a small space between them, and the two balls are dropped simultaneously from height H. (The height is much larger than the radius of each ball, so you may neglect the radius.) The large ball bounces elastically off the floor and the small ball bounces elastically off the large ball. a) For which value of the mass m, in terms of M, does the large ball stop when it collides with the small ball? b) What final height, in terms of H, does the small ball reach?
A cylinder with a diameter of 2.0 in. and height of 3 in. solidifies in 3 minutes in a sand casting operation. What is the solidification time if the cylinder height is doubled? What is the time if the diameter is doubled?
What minimum value of the coefficient of static friction between the ground and the cheetah's feet is necessary to provide this acceleration

An element emits light at two nearly equal wavelengths, 577 nm and 579 nm If the light is normally incident on a diffraction grating with 2000 lines/cm., what is the distance between the 3rd order fringes of the two wavelengths on a screen 1 m from the grating?

Answers

Answer:

Explanation:

d = width of slit = 1 / 2000 cm =5 x 10⁻⁶ m

Distance of screen D = 1 m.

wave length λ₁ and λ₂ are 577 x 10⁻⁹ and 579 x 10⁻⁹ m.respectively.

distance of third order bright fringe = 3.5 λ D/d

for 577 nm , this distance = 3.5 x 577 x 10⁻⁹ x 1 /5 x 10⁻⁶

= .403 m = 40.3 cm

For 579 nm , this distance = 3.5 x 579 x 1 / 5 x 10⁻⁶

= 40.5 cm

Distance between these two = 0.2 cm.

A chair of weight 100 N lies atop a horizontal floor; the floor is not frictionless. You push on the chair with a force of F = 43.0 N directed at an angle of 35.0 degrees below the horizontal and the chair slides along the floor. Using Newton's laws, calculate n, the magnitude of the normal force that the floor exerts on the chair. Express your answer in newtons.

Answers

Answer:

The normal force will be "122.8 N".

Explanation:

The given values are:

Weight,

W = 100 N

Force,

F = 40 N

Angle,

θ = 35.0°

As we know,

⇒  N=W+FSin \theta

On substituting the given values, we get

⇒      = 100N+40N \ Sin \theta

⇒      =100N+22.8

⇒      =122.8 \ N

Final answer:

To calculate the magnitude of the normal force, analyze the forces acting on the chair and find the sum of the vertical component of the applied force and the weight of the chair. The normal force is equal to the sum of the vertical component of the applied force and the weight of the chair.

Explanation:

To calculate the magnitude of the normal force that the floor exerts on the chair, we need to analyze the forces acting on the chair. The weight of the chair is acting vertically downwards with a magnitude of 100 N. The force you apply to the chair is acting at an angle of 35.0 degrees below the horizontal. Since the chair is sliding, there must be a friction force opposing its motion. Using Newton's laws, we can find the normal force.

  1. Resolve the applied force into horizontal and vertical components. The horizontal component is given by F_cos(35°) and the vertical component is given by F_sin(35°).
  2. The horizontal component of the applied force is balanced by the friction force. Therefore, the friction force is equal to the horizontal component of the applied force.
  3. The vertical component of the applied force and the weight of the chair contribute to the normal force. So, the normal force is equal to the sum of the vertical component of the applied force and the weight of the chair.

Therefore, n = F_sin(35°) + weight = 43.0 N * sin(35°) + 100 N.

Learn more about normal force here:

brainly.com/question/35478728

#SPJ3

Crude oil is a mixture of many different components. The extraction of crude oil from the Earth is important, but its refinement into different substances is a key piece to obtaining as many uses as possible from the crude oil. Using the diagram, justify the source of data used to develop the technology for refining the crude oil.

Answers

Crude oil is a mixture of nitrogen, oxygen, sulphur, and hydrogen components

What is Crude oil?

A combination of hydrocarbons known as crude oil is one that is found in naturally occurring subsurface reservoirs in the liquid phase and continues to be liquid at atmospheric pressure after passing through surface separation equipment.

Refineries transform crude oil into useful products including gasoline, diesel, and aviation fuels for transportation. Gasoline: A fuel used in both personal and commercial vehicles that are made for internal combustion engines.

In addition to some nitrogen, sulphur, and oxygen, crude oil is a combination of very flammable liquid hydrocarbons (compounds mostly made of hydrogen and carbon).

More about the Crude oil link is given below.

brainly.com/question/351648

#SPJ6

Answer: Different fuel components boil at different temperatures, allowing them to be separated.

Explanation:

A certain part of the electromagnetic spectrum ranges from 200 nm to 400 nm. What is the lowest frequency associated with this portion of the spectrum?

Answers

Answer:

the lowest frequency is 7.5* 10^(14) Hz

Explanation:

In the question it is given that wavelength(L) in the range of 200μm to 400μm.

let ν be frequency of wave v velocity = 3\times 10^8

velocity v= Lν

therefore ν=(v)/(L)

frequency ν be lopwest when L will be heighest

ν(lowest)=(3* 10^8)/(400* 10^-9)

ν=7.5* 10^(14) Hz

The rms speed of the molecules in 1.3 g of hydrogen gas is 1600 m/s.Part A. What is the total translational kinetic energy of the gas molecules?
Part B. What is the thermal energy of the gas?
Part C. 500J of work are done to compress the gas while, in the same process, 2000J of heat energy are transferred from the gas to the environment. Afterward, what is the rms speed of the molecules?

Answers

a. The total translational kinetic energy of the gas molecules is 1672 Joules.

b. The thermal energy of a gas molecule is equal to 1672 Joules.

c. The rms speed of the gas molecules is equal to 512.83 m/s.

Given the following data:

  • Mass of hydrogen gas = 1.3 gram.
  • Speed (rms), c = 1600 m/s.
  • Work done = 500 Joules.
  • Quantity of energy = 2000 Joules.

Scientific data:

  • Mass of proton = 1.67 * 10^(-27) kg.
  • Avogadro constant = 6.02 * 10^(23)

a. To calculate the total translational kinetic energy of the gas molecules:

How to calculate translational kinetic energy.

First of all, we would determine the number of moles of hydrogen gas contained in 1.3 grams:

Note:Molar mass of hydrogen gas = 2 g/mol.

Number \;of \;moles = \frac {mass}{molar\;mass}\n\nNumber \;of \;moles = \frac {1.3}{2}

Number of moles = 0.65 moles.

Next, we would determine the number of molecules in 0.65 moles of hydrogen gas:

By stoichiometry:

1 mole = 6.02 * 10^(23) molecules.

0.65 mole = X molecules.

Cross-multiplying, we have:

X = 0.65 * 6.02 * 10^(23) = 3.913 * 10^(23) molecules.

Mathematically, total translational kinetic energy is given by this formula:

T = (1)/(2) mc^2

Substituting the given parameters into the formula, we have;

T = (1)/(2)  * 2 * 1.67 * 10^(-27) * 3.913 * 10^(23) * (1600)^2\n\nT = 6.53 * 10^(-4) *  2560000

T = 1,671.681672 Joules.

b. In Science, the total translational kinetic energy is equal to the thermal energy of a gas molecule.

Thermal energy = 1672 Joules.

c. To calculate the rms speed of the gas molecules:

Net\;energy = 500 + 1672 -2000

Net energy = 172 Joules.

For the rms speed:

172 = (1)/(2)  * 2 * 1.67 * 10^(-27) * 3.913 * 10^(23) * c^2\n\n172 = 6.54 * 10^(-4) c^2\n\nc = \sqrt{(172)/(6.54 * 10^(-4)) } \n\nc=√(262996.95)

c = 512.83 m/s.

Read more on rms speed here: brainly.com/question/7427089

Final answer:

The total translational kinetic energy and thermal energy of 1.3g of hydrogen gas with rms speed of 1600 m/s is 5.01x10^25 Joules. After work of 500 Joules is done to compress the gas and 2000 Joules of heat energy are transferred out, the kinetic and thermal energy remains the same, thus the rms speed remains largely the same (with a negligible change due to roundoff errors).

Explanation:

You're asking about the behavior of a hydrogen gas in terms of its kinetic and thermal energy, as well as changes in its root mean square (rms) speed as work is done to compress the gas and heat is transferred out of it.

Part A: The total translational kinetic energy can be calculated using the formula 1/2*m*v^2, where m is the mass and v is the speed. For hydrogen in monoatomic gas, 1.3g of hydrogen is about 0.65 moles. 1 mole's mass is about 1g, so 0.65 moles would be about 0.65g. Convert this to kilograms: 0.65g = 0.00065kg. To find the individual molecule's kinetic energy, you multiply by Avogadro's number (6.02*10^23) as there are that many molecules in a mole. Therefore, the Total translational kinetic energy = 1/2 * 0.00065 kg * (1600 m/s)^2 * 6.02x10^23 = 5.01x10^25 Joules.

Part B: At equilibrium, the thermal energy of a gas is equal to its kinetic energy, so the thermal energy would also be 5.01x10^25 Joules.

Part C: According to the principle of energy conservation, the final kinetic (and thus, thermal) energy of the gas will be its initial energy plus the work done on it minus the heat transferred out of it. Therefore, the final energy = 5.01x10^25 Joules + 500 Joules - 2000 Joules = 5.01x10^25 Joules. To find the new rms speed, you set this equal to the kinetic energy formula and solve for v. Doing so gets you a modulus change in the root mean square speed. Please note that this involves some simplifying assumptions and may not reflect what would happen in a more complex system.

Learn more about Gas Physics here:

brainly.com/question/857678

#SPJ12

Shameeka is studying for an exam she took the notable about calcium and chlorine which are known to for my comic born's which shameekas error?

Answers

The individual calcium atom has a positive and not negative, 2 charge

Answer:

The individual calcium atom has a positive, not negative, 2 charge.

Explanation:

Did the quiz also had it on the unit test on edgunity.

Hope this helps guys!

Other Questions