1. The workpart in a turning operation is 88 min in diameter and 400 mm long. A feed of 0.25 mm/rev is used in this operation. If cutting speed is 3.5 m/s, the too should be changed in every 3 workparts, but if the cutting speed is 2.5 m/sec, the tool can be used to produce 20 pieces between the tool changes. Determine the cutting speed that will allow the tool to be used for 50 parts between tool changes.

Answers

Answer 1
Answer:

Find the given attachments


Related Questions

What causes rain? a.air becomes filled with water vapor b.water vapor condenses on dust particlesc. dust particles can no longer support water droplets
Express the following speeds as a function of the speed of light, c: (a) an automobile speed (93 km/h) (b) the speed of sound (329 m/s) (c) the escape velocity of a rocket from the Earth's surface (12.1 km/s) (d) the orbital speed of the Earth about the Sun (Sun-Earth distance 1.5×108 km).
Which one of the following statements concerning the Stefan-Boltzmann equation is correct? The equation can be used to calculate the power absorbed by any surface. The equation applies only to perfect radiators. The equation applies only to perfect absorbers. The equation is valid with any temperature units. The equation describes the transport of thermal energy by conduction.
An object essentially at infinity is moved to a distance of 90 cm in front of a thin positive lens. In the process its image distance triples. Determine the focal length of the lens.
A particle located at the position vector m has a force N acting on it. The torque about the origin is

A uniform-density 8 kg disk of radius 0.25 m is mounted on a nearly frictionless axle. Initially it is not spinning. A string is wrapped tightly around the disk, and you pull on the string with a constant force of 41 N through a distance of 0.9 m. Now what is the angular speed

Answers

The angular speed should be 17.18  rad / s

Calculation of the angular speed:

Since

moment of inertia of the disc I = 1/2 m r²

= .5 x 8 x .25²

= .25 kg m²

Now the work done by force should be converted into the rotational kinetic energy

F x d = 1/2 I ω²

here,

F is the force applied,

d is displacement,

I is moment of inertia of disc

and ω is angular velocity of disc

So,

41 x .9 = 1/2 x .25 ω²

ω² = .25

ω = 17.18  rad / s

Learn more about speed here: brainly.com/question/18742396

Answer:

Explanation:

moment of inertia of the disc I = 1/2 m r²

= .5 x 8 x .25²

= .25 kg m²

The wok done by force will be converted into rotational kinetic energy

F x d = 1/2 I ω²

F is force applied , d is displacement , I is moment of inertia of disc and ω

is angular velocity of disc

41 x .9 = 1/2 x .25 ω²

ω² = .25

ω = 17.18  rad / s

Your classmate’s mass is 63 kg and the table weighs 500 N. Calculate the normal force on the table by the floor. Show your work!

Answers

Answer:

F_N=1234.8N

Explanation:

Hello.

In this case, since the normal force is opposite to the total present weight, we can compute it by considering the mass of the classmate with the gravity to compute its weight, and the weight of the table:

F_N=63kg*9.8m/s^2+500N\n\nF_N=617.4N+500N\n\nF_N=1234.8N

Best regards.

Recall your experimental setup from Lab 05A: a constant force was applied to a disc by attaching a mass to a light string wrapped around a mass-less pulley and hanging the mass over the edge of the apparatus. In the lab, you used energy conservation arguments to derive an expression for the angular velocity of the disc after the mass had fallen a distance x . Your goal now is to use kinematics and dynamics to confirm your expression. Use the following symbols throughout this question: m is the mass of the hanging mass, M is the mass of the disc, r is the radius of the pulley, R is the radius of the disc, x is the distance the mass has fallen, and g is the acceleration due to gravity. What is the linear acceleration of the mass after it has fallen a distance x

Answers

Answer:

  w = \sqrt{(2gy)/(r^2 + (1)/(2) R^2  ) }

Explanation:

For this exercise let's start by applying Newton's second law to the mass with the string

                W - T = m a

In this case, as the system is going down, we will assume the vertical directional down as positive.

                T = W - m a

Now we apply Newton's second law for rotational motion to the pulley of radius r. We will assume the positive counterclockwise rotations

                ∑ τ = I α

                T r = I α

the moment of inertia of the disk is

               I = ½ M R²

angular and linear acceleration are related

               a = α r

we substitute

               T r = (½ m R²) (a / r)

               T = ½ m ((R)/(r) )² a

we write our two equations

               T = W - m a

               T = ½ m ((R)/(r) )² a

we solve the system of equations

              W - m a = ½ m (\frac{R}{r} )² a

              m g = m a [ 1 + ½ (\frac{R}{r} )² ]

             a = (g)/( 1 + (1)/(2)  ((R)/(r))^2 )

this acceleration is constant throughout the trajectory, so with the angular and lineal kinematics relations

             w² = w₀² + 2 α θ

             v² = v₀² + 2 a y

as the system is released its initial angular velocity is zero

              w² = 0 + 2 α θ

              v² = 0 + 2 a y

we look for the angular acceleration

              a =α r

              α = a / r

              α = (g)/(r (1 + (1)/(2) ((R)/(r))^2 )

we look for the angle, remember that they must be measured in radians

             θ = s / r

in this case we approximate the arc to the distance

            s = y

            θ = y / r

we substitute

            w = \sqrt{2 (g)/( r( (1)/(2)  ((R)/(r))^2   )  (y)/(r) }

            w = \sqrt{(2gy)/(r^2 + (1)/(2) R^2  ) }

    for the simple case where r = R

            w = \sqrt{ (2gy)/( (3)/(2) R^2 ) }

            w = \sqrt{ (4)/(3) (gy)/(R^2) }

What is the magnitude of a point charge that would create an electric field of 1.18 N/C at points 0.822 m away?

Answers

Answer:

q = 8.85 x 10⁻¹¹ C

Explanation:

given,

Electric field, E = 1.18 N/C

distance, r = 0.822 m

Charge magnitude = ?

using formula of electric field.

E = (kq)/(r^2)

k is the coulomb constant

q= (Er^2)/(k)

q= (1.18* 0.822^2)/(9* 10^9)

  q = 8.85 x 10⁻¹¹ C

The magnitude of charge is equal to q = 8.85 x 10⁻¹¹ C

A rectangular loop (area = 0.15 m2) turns in a uniform magnetic field, B = 0.18 T. When the angle between the field and the normal to the plane of the loop is π/2 rad and increasing at 0.75 rad/s, what emf is induced in the loop?

Answers

Answer:

Emf induced in the loop is 0.02V

Explanation:

To get the emf of induced loop, we have to use faraday's law

ε = - dΦ/dt

To get the flux, we use;

Φ = BA cos(θ)

B = The uniform magnetic field

A = Area of rectangular loop

θ = angle between magnetic field and normal to the plane of loop

substitute the flux equation (Φ) into the faraday's equation

we have ε = - d(BA cos(θ)) / dt

ε = BA sinθ dθ/dt

from the question;B = 0.18T, A=0.15m2, θ = π/2 ,dθ/dt = 0.75rad/s

Our equation will now look like this;

ε = (0.18T) (0.15m2) (sin(π/2)) (0.75rad/s)

ε = 0.02V

Convert 7 (gcm^2)/(min^2) into a value in standard S.I. units. Be sure to use scientific notation if necessary. You do not need to answer units.

Answers

The required value is required in SI units.

The required answer is 1.94*10^(-10)\ \text{kg m}^2/\text{s}^2

SI units

The SI unit of mass, length and time is kg, m and s respectively.

In order to convert one unit into another it has to be multiplied or divided by the conversion factors.

A definite magnitude which has some quantity which is defined by convention or law is called a unit.

The conversion factors are

1\ \text{g}=10^(-3)\ \text{kg}

1\ \text{cm}=10^(-2)\ \text{m}

1\ \text{cm}^2=10^(-4)\ \text{m}^2

1 min = 60 s

1\ \text{min}^2=60*60\ \text{s}^2

So,

7\ \text{g cm}^2/\text{min}^2=7* (10^(-3)* 10^(-4))/(60* 60)\n =1.94*10^(-10)\ \text{kg m}^2/\text{s}^2

Learn more about SI units:

brainly.com/question/16393390

Hi hi hi hi hi hi hi
Other Questions