Given Information:
mass of child 1 = m₁ = 40 kg
distance from fulcrum of child 1 = d₁ = 2 m
mass of child 2 = m₂ = 40 kg
distance from fulcrum of child 2 = d₂ = 3 m
mass of child 3 = m₃ = 80 kg
Required Information:
distance from fulcrum of child 3 = d₃ = ?
Answer:
distance from fulcrum of child 3 = 2.5 m
Explanation:
In order to balance the see-saw, the moment of force should be same on both sides of the fulcrum.
Since 2 children are sitting on one side and only 1 on the other side
F₁d₁ + F₂d₂ = F₃d₃
Where Force is given by
F = mg
m₁gd₁ + m₂gd₂ = m₃gd₃
m₁d₁ + m₂d₂ = m₃d₃
Re-arrange the equation for d₃
m₃d₃ = m₁d₁ + m₂d₂
d₃ = (m₁d₁ + m₂d₂)/m₃
d₃ = (40*2 + 40*3)/80
d₃ = 2.5 m
Therefore, the child on the other side should sit 2.5 m from the fulcrum so that the see-saw remains balanced.
Answer:
Solvent
Explanation:
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
Answer:
Magnitude - 11.83 Degree
Direction - 422.42 N
Explanation:
Given data:
Downward force on wire 176 N
Angle made by left section of wire 12.5 degree with horizontal
Tension force = 413 N
From figure
Applying quilibrium principle at point A
The vertical and horizontal force is 0
then we have
........1
.......2
.......3
divide equation 3 by 1
we get
...........4
from equation 3 and 4
T = 422.42 N
Answer: The speed of the moon's rotation keeps the same side always facing Earth.
Explanation: Please mark me brainiest
Answer:
The speed of the Moon's rotation keeps the same side always facing Earth.
Explanation:
got it right on study island :)
B) must be accelerating
C) may be slowing down
D) may be moving at constant speed
Answer:
hmmm thats too hard for me.
Explanation:
Answer:
i believe that it is d
Explanation:
In a super heater, the temperature of the steam rises while the pressure remains constant. This process helps to remove the last traces of moisture from the saturated steam.
In a super heater, the conclusion is that option (C) pressure remains constant and temperature rises is the correct choice. A super heater is a device used in a steam power plant to increase the temperature of the steam, above its saturation temperature. The function of the super heater is to remove the last traces of moisture (1 to 2%) from the saturated steam and to increase its temperature above the saturation temperature. The pressure, however, remains constant during this process because the super heater operates at the same pressure as the boiler.
#SPJ2
b. counterclockwise
c. There is no induced current in the coil.
Answer:
Option B
Explanation:
As per the Lenz’s law of electromagnetism the current induced in a conductor due to any change has a tendency to oppose the change which is causing this induces current.
Thus, when a constant magnetic field with an electric circuit is varied, it produces and induced current which flow in a direction such that its sets a magnetic field that tries to restore the flux
Hence, option B is correct