Answer:
the new depth is 2.3 ft
Explanation:
the solution is in the attached Word file
Answer:
Heat flux = (598.3î + 204.3j) W/m²
a) Magnitude of the heat flux = 632.22 W/m²
b) Direction of the heat flux = 18.85°
Explanation:
- The correct question is the first image attached to this solution.
- The solution to this question is contained on the second and third images attached to this solution respectively.
Hope this Helps!!!
Answer:
Explanation:
solution below
The quantum of energy for one atomic oscillator in tungsten, given the effective interatomic spring stiffness of 360 N/m, the mass of one tungsten atom as 3.074 x 10^-25 kg, and the reduced Planck's constant of 1.0546 x 10^-34 J · s, can be calculated to be approximately 1.33 x 10^-21 J.
To calculate the quantum of energy for one atomic oscillator in tungsten, we will consider the model of an atom being connected to two springs, both having an effective interatomic spring stiffness of four times the given value (90 N/m). This value thus becomes 360 N/m.
One mole of tungsten has a mass of 0.185 kg, thus the mass of one atom can be determined by dividing this value by Avogadro's number (6.0221 x 10^23 molecules/mole), which gives approximately 3.074 x 10^-25 kg.
The quantum of energy, or the energy of one quantum (the smallest possible energy increment), is given by the formula E = ħω, where ħ is the reduced Planck's constant (1.0546 x 10^-34 J · s) and ω is the angular frequency, given by sqrt(k/m), where k is the spring constant and m is the mass.
Substituting the known values into these equations gives ω= sqrt((360)/(3.074 x 10^-25)) and E= (1.0546 x 10^-34) x sqrt((360)/(3.074 x 10^-25)), which results in a quantum of energy of approximately 1.33 x 10^-21 J.
#SPJ3
The volume of the air in the bag of potato chips to the mountains which is still sealed, 2.766 liters.
The gas law is used to show the relationship between the pressure and the temperature of the gases. It can be given as,
Here, (n) and (r) are the constant. Therefore,
For the initial and final values, the gas law can be given as,
Here, (subscript 1,and 2) is used for the initial and final amount of pressure and temperature.
The initial values of the bag of potato chips as volume of 2.00 L, pressure of 1.00 ATM and a temperature of 20.0°C. It is known that the value of 1 ATM is equal to the 101.325 kPa.
The final temperature of the pack is 7.00°C and atmospheric pressure is 70.0 kPa
Put the values in the above formula as,
Hence, the volume of the air in the bag of potato chips to the mountains which is still sealed, 2.766 liters.
Learn more about the gas law here;
Answer:
The volume at mountains is 2.766 L.
Explanation:
Given that,
Volume
Pressure
Pressure
Temperature
Temperature
We need to calculate the volume at mountains
Using gas law
For both temperature,
Put the value into the formula
Hence, The volume at mountains is 2.766 L.
Answer:
The acceleration is 2.448 meters per square second and is vertically upward.
Explanation:
The Free Body Diagram of the plastic ball in the liquid is presented in the image attached below. By Second Newton's Law, we know that forces acting on the plastic ball is:
(1)
Where:
- Buoyant force, measured in newtons.
- Mass of the plastic ball, measured in kilograms.
- Gravitational acceleration, measured in meters per square second.
- Net acceleration, measured in meters per square second.
If we know that , and , then the net acceleration of the plastic ball is:
The acceleration is 2.448 meters per square second and is vertically upward.
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation:
Answer:
-9Q
Explanation:
Electric field at origin is:
Electric field due to first charge at origin would be:
Electric field due to second charge would be:
If the second charge is Q', then should be:
compare the above two values to find the possible values of Q':
The net electric field at origin is greater than the one due to first charge. It means the second charge adds on to the electric field at the origin. Thus, it should be a negative charge.
Thus, Q' = -9Q
One value is possible as the location of the second charge is given to be on the positive x-axis.
The possible values for the unknown charge are 1/9 of the magnitude of the known charge.
To find the possible values for the unknown charge, we need to use the principle of superposition. The net electric field at the origin is given by the sum of the electric fields due to each charge. We know that the magnitude of the net electric field is 2keQ/a^2, so we can set up the equation:
2keQ/a^2 = keQ/(-a)^2 - keq/(3a)^2
By solving this equation, we can find the possible values for the unknown charge. Simplifying the equation, we get:
2 = 1 - 1/9
1/9 = 1
After solving the equation, we find that the possible value for the unknown charge is 1/9 of the magnitude of the known charge.
#SPJ3