Answer:
The ball land at 3.00 m.
Explanation:
Given that,
Speed = 40 m/s
Angle = 35°
Height h = 1 m
Height of fence h'= 12 m
We need to calculate the horizontal velocity
Using formula of horizontal velocity
We need to calculate the time
Using formula of time
We need to calculate the vertical velocity
We need to calculate the vertical position
Using formula of distance
Put the value into the formula
We need to calculate the distance
Hence, The ball land at 3.00 m.
The pressure drop is equal to 80.99 Pa
d1 = 2 cm = 0.02 m
d2 = 1 cm = 0.01 m
v = 3 m/s
p = 1.25 kg/m^3
Here we use Bernoulli's principle for the Venturi Tube:
Now the following formula for area calculation should be used:
= 80.99
Find out more information about the Pressure here: brainly.com/question/356585?referrer=searchResults
Answer:
the pressure drop is equal to 80.99 Pa
Explanation:
we have the following data:
d1 = 2 cm = 0.02 m
d2 = 1 cm = 0.01 m
v = 3 m/s
p = 1.25 kg/m^3
ΔP = ?
For the calculation of the pressure drop we will use Bernoulli's principle for the Venturi Tube:
P1 - P2 = ((v^2*p)/2)*((A1^2/A2^2)-1)
where A = area
P1 - P2 = ΔP = ((v1^2*p)/2)*((A1^2/A2^2)-1)
for the calculation of the areas we will use the following formula:
A1 = (pi*d1^2)/4 = (pi*(0.02 m)^2)/4 = 0.00031 m^2
A2 = (pi*(0.01 m)^2)/4 = 0.000079 m^2
ΔP = ((3 m/s)^2*1.25 kg/m^3)/2)*((0.00031 m^2)^2/(0.000079 m^2)^2)-1) = 80.99 N/m^2 = Pa
7 true
8 false
9 false
10 false
11 false
12 true
13 true
hope this helps!
Answer:
The Jupiter´s mass is approximately 1.89*10²⁷ kg.
Explanation:
The only force acting on Calisto while is rotating around Jupiter, is the gravitational force, as defined by the Newton´s Universal Law of Gravitation:
Fg = G*mc*mj / rcj²
where G = 6.67*10⁻¹¹ N*m²/kg², mc= Callisto´s mass, mj= Jupiter´s mass, and rcj = distance from Jupiter for Callisto= 1.88*10⁹ m.
At the same time, there exists a force that keeps Callisto in orbit, which is the centripetal force, that actually is the same gravitational force we have already mentioned.
This centripetal force is related with the period of the orbit, as follows:
Fc = mc*(2*π/T)²*rcj.
In order to be consistent in terms of units, we need to convert the orbital period, from days to seconds, as follows:
T = 16.69 days* 86,400 (sec/day) = 1.44*10⁶ sec.
We have already said that Fg= Fc, so we can write the following equality:
G*mc*mj / rcj² = mc*(2*π/T)²*rcj
Simplifying common terms, and solving for mj, we get:
mj = 4*π²*(1.88*10⁹)³m³ / ((1.44*10⁶)² m²*6.67*10⁻11 N*m²/kg²)
mj = 1.89*10²⁷ kg.
Answer: Mass of Jupiter ~= 1.89 × 10^23 kg
Explanation:
Given:
Period P= 16.69days × 86400s/day= 1442016s
Radius of orbit a = 1.88×10^6km × 1000m/km
r = 1.88 × 10^9 m
Gravitational constant G= 6.67×10^-11 m^3 kg^-1 s^-2
Applying Kepler's third law, which is stated mathematically as;
P^2 = (4π^2a^3)/G(M1+M2) .....1
Where M1 and M2 are the radius of Jupiter and callisto respectively.
Since M1 >> M1
M1+M2 ~= M1
Equation 1 becomes;
P^2 = (4π^2a^3)/G(M1)
M1 = (4π^2a^3)/GP^2 .....3
Substituting the values into equation 3 above
M1 = (4 × π^2 × (1.88 × 10^9)^3)/(6.67×10^-11 × 1442016^2)
M1 = 1.89 × 10^27 kg
b. the ball becomes positively charged by induction
c. the string is not a perfect insulator
d. there is a rearrangement of the electrons in the ball
e. the number of electrons in the ball is more than the number in the rod
Answer:
d. there is a rearrangement of the electrons in the ball
Explanation:
Inside the neutral metal ball, there are equal no. of positive charges (protons) and negative charges (electrons). Normally, the charges are distributed evenly throughout the ball.
However, when the positively charged insulating rod is brought near, since positive charges and negative charges attract each other, the electrons (-ve charges) in the metal ball moves towards the side nearest to the rod. The metal ball gets attracted to the rod.
a and b are not correct because the rod is insulating, so electrons cannot be transferred between them to induce a net charge in the metal ball. the no. of electrons is unrelated to the attraction between opposite charges , so e is incorrect as well.
Answer:
Explanation:
Given;
Thickness of the glass plate,
refractive index of the glass plate,
wavelength of light source in vacuum,
distance between the source and the screen,
Distance travelled by the light from source to screen in vacuum:
So the no. of wavelengths in the vacuum:
.......................(1)
Now we find the wavelength of the light wave in the glass:
where:
wavelength of light in the medium of glass.
Now the no. of wavelengths in the glass:
............................(2)
From (1) & (2):