Answer:
1.56 - 1.67
Explanation:
Refractive index of any material is given as the ratio of the speed of light in a vacuum to the speed of light in that medium.
Mathematically, it is given as:
n = c/v
Where c is the speed of light in a vacuum and v is the speed of light in the medium.
Given that the speed of light in the optical medium varies from 1.8 * 10^8 m/s to 1.92 * 10^8 m/s, we can find the range of the refractive index.
When the speed is 1.8 * 10^8 m/s, the refractive index is:
n = (3 * 10^8) / (1.8 * 10^8)
n = 1.67
When the speed is 1.92 * 10^8 m/s, the refractive index is:
n = (3 * 10^8) / (1.92 * 10^8)
n = 1.56
Therefore, the range of values of the refractive index of the optical medium is 1.56 - 1.67.
Answer:
(a)
(b) Initial velocity of the projectile is 22.54 m/s
(c) Straight line perpendicular to the plane of the car's motion
(d) Parabolic
(e) The initial velocity is 23.04 m/s
Solution:
As per the question:
Velocity of the cart, v = 0.500 m/s
Distance moved by the cart, d = 2.30 m
Now,
(a) The projectile must be fired at an angle of so that it mounts on the top of the cart moving with constant velocity.
(b) Now, for initial velocity, u':
Time of flight is given by;
(1)
where
T = Flight time
D = Distance covered
(b) The component of velocity w.r.t an observer:
Horizontal component,
Vertical component,
Also, the vertical component of velocity at maximum height is zero,
Therefore,
Total flight time, (2)
Now, from eqn (1) and (2):
(c) The shape of the projectile w.r.t an observer will be a straight line perpendicular to the plane of cart's motion.
(d) The shape of the path of the projectile seen by the physics student outside the reference frame of the cart is parabolic
(e) The initial velocity is given by:
u = u' + v = 22.54 + 0.5 = 23.04 m/s
Answer:
a) TB = m2 * w^2 * 2*d
b) TA = m1 * w^2 * d + m2 * w^2 * 2*d
Explanation:
The tension on the strings will be equal to the centripetal force acting on the boxes.
The centripetal force is related to the centripetal acceleration:
f = m * a
The centripetal acceleration is related to the radius of rotation and the tangential speed:
a = v^2 / d
f = m * v^2 / d
The tangential speed is:
v = w * d
Then
f = m * w^2 * d
For the string connecting boxes 1 and 2:
TB = m2 * w^2 * 2*d
For the string connecting box 1 to the shaft
TA = m1 * w^2 * d + m2 * w^2 * 2*d
Answer: 9.59° and 350.41°
Explanation: The formulae that relates the force F exerted on a moving charge q with velocity v in a magnetic field of strength B is given as
F =qvB sin x
Where x is the angle between the strength of magnetic field and velocity of the charge.
q = 1.609×10^-19 C
v = 4×10³ m/s
B = 1.25 T
F = 1.40×10^-16 N
By substituting the parameters, we have that
1.40×10^-16 = 1.609×10^-19 × 4×10³ × 1.25 × sinx
sin x = 1.40×10^-16/ 1.609×10^-19 × 4×10³ × 1.25
sin x = 1.40×10^-16 /8.045*10^(-16)
sin x = 0.1666
x = 9.59°
The value of sin x is positive in first and fourth quadrant.
Hence to get the second value of x, we move to the 4th quadrant of the trigonometric quadrant which is 360 - x
Hence = 360 - 9.59 = 350.41°
Answer:
Apparent frequency of the bell to the observer is 546.12 Hz
Explanation:
The frequency of train bell (frequency of source) = 505 Hz
The speed of train (observer) = 27.6 m/s
The speed of sound in the air is (velocity of sound) = 339 m/s
The apparent frequency of the bell to the observer is calculated as follows:
Apparent frequency of bell to the observer.
Answer:
E = 1.76 J
Explanation:
Given that,
Mass of an object, m = 0.4 kg
It moves by a vertical distance of 0.45 m in the Earth's gravitational field.
We need to find the change in its gravitational potential energy. It can be given by the formula as follow :
So, the change in its gravitational potential energy is 1.76 J.
b. the angular location of the first order minimum in the diffraction pattern. Which means at this point the light experiences destructive interference.
c. the angular location of bright interference maxima in the pattern. Which means at this point the light experiences constructive interference.
d. the angular location of bright interference maxima in the pattern. Which means at this point the light experiences destructive interference.
Answer:
the answers the correct one is c
Explanation:
The diffraction pattern for a slit is
a sin θ = m λ
Where a is the width of the slit, λ the wavelength, m the order of destructive interference and θ the angle where the interference occurs.
The expression for multi-slit diffraction (diffraction grating) is
d sin θ = m λ
Where d is the distance between slits, λ the wavelength m the order of the diffraction maximums and θ the angle for these maximums.
When we compare the expressions of the answers the correct one is c