Answer: D i am pretty sure
Explanation:
Answer:
all
Explanation:
Answer:
direction is Horizontal
Explanation:
As we know that the string is horizontal here
so the tension force in the string is due to electrostatic force on it
now we will have
so here the force is tension force on it
now we have
direction is Horizontal
The magnitude of the electric field on the charged sphere in this scenario is approximately 1.17 x 10^-5 N/C. The direction of the electric field is horizontal, which is the same direction as the tension in the thread.
To start, we can use the equilibrium condition where the tension in the thread is equal to the force due to the electric field and gravity on the sphere. The formula to calculate the electric force is F = qE, and the gravitational force is F = mg, where F is the force, q is the electric charge, E is the electric field, m is the mass of the object, and g is the gravity constant.
Tension - electric force - gravitational force equals zero: T - F_electric - F_gravity = 0. We fill in the previous formulas: T - qE -mg = 0. This can be rearranged to E = (T + mg) / q.
In this case, the sphere's mass m is 0.018 kg, the tension T is 6.57 x 10^-2 N, and the sphere's charge q is 6.80 x 10^3 C, and we use g = 9.81 m/s². So, E = ((6.57 x 10^-2) + (0.018 * 9.81)) / 6.80 x 10^3.
This leads to an electric field magnitude of approximately 1.17 x 10^-5 N/C. The direction of the electric field is the same as the direction of the tension, which is horizontal due to the thread being horizontal.
#SPJ3
How many bright-dark-bright fringe shifts are observed as the cell fills with air?
Answer:
55.3
Explanation:
The computation of the number of bright-dark-bright fringe shifts observed is shown below:
where
d =
n = 1.00028
Now placing these values to the above formula
So, the number of bright-dark-bright fringe shifts observed is
= 55.3
We simply applied the above formula so that the number of bright dark bright fringe shifts could come
Answer:
Explanation:
The uncertainty in energy is given by
here h is plank's constant which value is and is the time interval which is given as
So using all the parameters the smallest possible uncertainty in electrons energy is
Answer:
i would tell you but im a hobbit
Explanation:
biden 2020
Answer:
2.31 Ω
Explanation:
According to the Faraday's law of electromagnetic induction,
Induced emf = - N (dΦ/dt)
Emf = -N (ΔΦ/t)
where N = number of turns = 11
Φ = magnetic flux
ΔΦ = change in magnetic flux = 9.69 - 5.60 = 4.09 Wb
t = time taken for the change = 0.0657 s
Emf = 11(4.09/0.0657)
Emf = - 684.78 V (the minus sign indicates that the direction of the induced emf is opposite to the direction of change of magnetic flux)
From Ohm's law,
Emf = IR
R = (Emf)/I
I = current = 297 A
R = (684.78)/297
R = 2.31 Ω
Hope this Helps!!
Explanation:
Below is an attachment containing the solution.
Answer:
Δ KE = - 8.75 x 10⁻⁴ J
Explanation:
given,
mass of applesauce = 7 g = 0.007 Kg
initial velocity, u = 0.5 m/s
final velocity, v = 0 m/s
Decrease in kinetic energy = ?
initial kinetic energy
KE₁ = 8.75 x 10⁻⁴ J
final kinetic energy
KE₂ =0 J
Decrease in kinetic energy
Δ KE = KE₂ - KE₁
Δ KE = 0 - 8.75 x 10⁻⁴
Δ KE = - 8.75 x 10⁻⁴ J
decrease in kinetic energy of the applesauce is equal to 8.75 x 10⁻⁴ J
The decrease in kinetic energy of the applesauce, when it hits the wall and stops, is the initial kinetic energy of it. Using the formula of kinetic energy, the decrease is calculated to be 0.000875 Joules.
This question relates to the concept of kinetic energy in physics. Kinetic energy is calculated by the formula 0.5 * mass (kg) * velocity (m/s)^2. So the initial kinetic energy of the applesauce right after being thrown was 0.5 * 0.007 kg * (0.5 m/s)^2 = 0.000875 Joules.
When the applesauce hits the wall and stops, its velocity drops to 0. Thus, its kinetic energy also goes to 0 (because kinetic energy is proportional to the square of velocity).
Therefore, the decrease in kinetic energy is the same as the initial kinetic energy of the applesauce, which is 0.000875 Joules.
#SPJ3