QuestIuI(2 PUMILS)
How much power is needed to lift a 750 kg elephant 14.3 m in 30.0 seconds?

Answers

Answer 1
Answer:

Given Information:

Mass of elephant = m = 750 kg

Height = h = 14.3 m  

time = t = 30 seconds

Required Information:

Power needed to lift elephant = P = ?

Answer:

Power needed to lift elephant ≈ 3507 watts

Explanation:

As we know power is given by

P = PE/t

Where PE is the potential energy and t is the time

Potential energy is given by

PE = mgh

Where m is the mass of elephant, g is the gravitational acceleration and h is the height to lift the elephant.

PE = 750*9.81*14.3

PE = 105212.25 Joules

Therefore, the required power to lift the elephant is

P = PE/t

P = 105212.25/30

P ≈ 3507 watts


Related Questions

At a stop light, a truck traveling at 10.5 m/s passes a car as it starts from rest. The truck travels at constant velocity and the car accelerates at 3 m/s2. How much time does the car take to catch up to the truck?
Why are continental rocks much older than oceanic crust?A. Oceanic crust is continually recycled through convection in the earth's mantleB. Oceanic crust is made out of much less dense material than continental crustC. Continental crust is continually renewed through convection in the earth's mantleD. Continental crust eats oceanic crust for breakfast
Which state of matter is most similar to solids
A radar for tracking aircraft broadcasts a 12 GHz microwave beam from a 2.0-m-diameter circular radar antenna. From a wave perspective, the antenna is a circular aperture through which the microwaves diffract. What is the diameter of the radar beam at a distance of 30 km
The knot at the junction is in equilibrium under the influence of four forces acting on it. The F force acts from above on the left at an angle of α with the horizontal. The 5.7 N force acts from above on the right at an angle of 50◦ with the horizontal. The 6.2 N force acts from below on the right at an angle of 44◦ with the horizontal. The 6.7 N force acts from below on the left at an angle of 43◦ with the horizontal.1. What is the magnitude of the force F?2. What is the angle a of the force F in the figure above?

A research Van de Graaff generator has a 2.00-m diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface?
(b) At what distance from its center is the potential 1.00 MV?
(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?

Answers

Answer:

a)V=49.5MV

b)r=49.5m

c)\Delta U=3*(49.5-1)=145.5 MeV  

Explanation:

a) The potential equation is given by:

V=k(Q)/(r)

k is the electrostatic constant (k=9.9*10^(9)Nm^(2)/C^(2))

Q is the charge Q = 5mC

r is the radius of the sphere r = 1 m

V=9.9*10^(9)(5*10^(-3))/(1)=49.5MV

b) We solve it using the same equation.

Here we need to find r:

r=k(Q)/(V)

r=9.9*10^(9)(5*10^(-3))/(1*10^(6))

r=49.5m

c) The relation between difference potential and electrical energy is:

\Delta U=\Delta Vq

here q is 3e becuase oxygen atom has three missing electrons

Therefore:

\Delta U=3*(49.5-1)=145.5 MeV  

I hope it heps you!

What is the force (in Newtons, 1 Newton = 1Kgm/s2) required to accelerate a 1500 Kg car to 3 m/s2?

Answers

Answer:

F=4500N

Explanation:

F=m×g

F=1500kg×3m/s²

F=4500N

Answer:

F=4500N

Explanation:

F=m×g

F=1500kg×3m/s²

F=4500N

Which of the following is a TRUE statement? a. It is possible for heat to flow spontaneously from a hot body to a cold one or from a cold one to a hot one, depending on whether or not the process is reversible or irreversible.
b. It is not possible to convert work entirely into heat.
c. The second law of thermodynamics is a consequence of the first law of thermodynamics.
d. It is impossible to transfer heat from a cooler to a hotter body.
e. All of these statements are false.

Answers

Answer:

e. All of these statements are false.

Explanation:

As we know that heat transfer take place from high temperature to low temperature.

It is possible to convert all work into heat but it is not possible to convert all heat in to work some heat will be reject to the surrounding.

The first law of thermodynamics is the energy conservation law.

Second law of thermodynamics  states that it is impossible to construct a device which convert all energy into work without rejecting the heat to the surrounding.

By using heat pump ,heat can transfer from cooler body to the hotter body.

Therefore all the answer is False.

You suspect that a power supply is faulty, but you use a power supply tester to measure its voltage output and find it to be acceptable. Why is it still possible that the power supply may be faulty?

Answers

While a power supply tester can be a useful tool for quickly checking voltage output, it might not reveal all the potential issues a faulty power supply can cause.

Even if a power supply tester shows that the voltage output of a power supply is within acceptable limits, it's still possible that the power supply may be faulty. Here's why:

1. Voltage Under Load: A power supply tester might only measure the voltage output under no load or very light load conditions.

A faulty power supply might provide the correct voltage at low loads but fail to deliver stable voltage under high loads, which could lead to system instability or crashes.

2. Voltage Ripple and Noise: Power supplies are expected to provide a stable and clean output voltage.

3. Short Circuits or Overloads: A power supply tester typically doesn't simulate the behavior of a real system.

4. Intermittent Issues: Faulty power supplies can exhibit intermittent issues. The power supply might work fine during the testing but fail when subjected to extended periods of operation or specific conditions.

5. Quality of Components: A power supply tester might not assess the quality of individual components within the power supply.

6. Compatibility Issues: Some power supplies might not be fully compatible with certain computer hardware. Even if the voltage seems fine, compatibility issues can still cause problems.

Learn more about Short Circuit here:

brainly.com/question/30778363

#SPJ12

A flat circular coil having a diameter of 25 cm is to produce a magnetic field at its center of magnitude, 1.0 mT. If the coil has 100 turns how much current must pass through the coil?

Answers

Answer:

The current pass through the coil is 6.25 A

Explanation:

Given that,

Diameter = 25 cm

Magnetic field = 1.0 mT

Number of turns = 100

We need to calculate the current

Using the formula of magnetic field

B =(\mu_(0)NI)/(2\pi r)

I=(B*2\pi r)/(\mu N)

Where, N = number of turns

r = radius

I = current

Put the value into the formula

I=(1.0*10^(-3)*2\pi*12.5*10^(-2))/(4\pi*10^(-7)100)

I=6.25\ A

Hence, The current passes through the coil is 6.25 A

A driver drives for 30.0 minutes at 80.0 km/h, then 45.0 minutes at 100 km/h. She then stops 30 minutes for lunch. She then travels for 30 minutes at 80 km/h. (a) Sketch a plot of her displacement versus time and speed versus time. (b) Calculate her average speed.

Answers

Answer:

b) 68,9 km/h a) picture

Explanation:

In this problem, since velocity is expressed in km/h and time in minutes, we have to convert either time to hours or velocity to km/min. It is easier to use hours.

Using this formula we pass time to hours:

t_(hours)=t_(min)*(1 h)/(60 min)\n30min*(1 h)/(60 min)=0,5h\n45min*(1 h)/(60 min)=0,75h

Now we can plot speed vs time (image 1). The problem says that the driver uses constant speed, so all lines have to be horizontal.

Using the values of the speed we calculate the distance in each interval

d=v*t\n80km/h*0.5h=40km\n100km/h*0.75h=75km

Using these values and the fact that she was having lunch in the third one (therefore stayed in the same position), we plot position vs time, using initial position zero (image 2, distance is in km, not meters).

Finally, we compute the average speed with the distance over time:

v_(average)=(155km)/(2.25h)=68.9km/h