Answer:
t = 7 sec.
Explanation:
As the car and the truck travel the same distance, assuming a constant acceleration, we can describe the movement of the truck and the car with these equations for this same displacement:
x(truck) = v*t (1)
x(car) =
As the left sides of (1) and (2) are equal each other, the same must be true for the right sides:
v*t =
Solving for t, replacing v= 10.5 m/s and a= 3 m/s², we have:
⇒ t = 7 sec.
b. In the reference frame of a cosmic ray how wide does Earth seem perpendicular to the flight direction?
Express your answer with the appropriate units.
Answer:
6052114.67492 m
Explanation:
v = Velocity of cosmic ray = 0.88c
c = Speed of light =
d = Width of Earth = Diameter of Earth =
When the cosmic ray is moving towards Earth then in the frame of the cosmic ray the width of the Earth appears smaller than the original
This happens due to length contraction
Length contraction is given by
The Earth's width is 6052114.67492 m
Contraction only occurs in the cosmic ray's frame of reference in the direction of the ray. But in perpendicular direction the width remains unchanged.
Hence, the width is
Answer:
k = 15.62 MN/m
Explanation:
Given:-
- The viscous damping constant, c = 1.8 KNs/m
- The floor oscillation magnitude, Yo = 3 mm
- The frequency of floor oscillation, f = 18 Hz.
- The combined weight of the grinding machine and the wheel, W = 4200 N
- Two springs of identical stiffness k are attached in parallel arrangement.
Constraints:-
- The stiffness k > 3.25 MN/m
- The grinding machine’s steady-state amplitude of oscillation to at most 10 mm. ( Xo ≤ 10 mm )
Find:-
What is the minimum required stiffness of each of the two springs as per the constraints given.
Solution:-
- The floor experiences some harmonic excitation due to the unbalanced engine running in the vicinity of the grinding wheel. The amplitude "Yo" and the frequency "f" of the floor excitation is given
- The floor is excited with a harmonic displacement of the form:
Where,
Yo : The amplitude of excitation = 3 mm
w : The excited frequency = 2*π*f = 2*π*18 = 36π
- The harmonic excitation of the floor takes the form:
- The equation of motion for the floor excitation of mass-spring-damper system is given as follows:
Where,
m: The combined mass of the rigid body ( wheel + grinding wheel body) c : The viscous damping coefficient
k_eq: The equivalent spring stiffness of the system ( parallel )
x : The absolute motion of mass ( free vibration + excitation )
- We will use the following substitutions to determine the general form of the equation of motion:
Where,
w_n: The natural frequency
p = ζ = damping ratio = c / cc , damping constant/critical constant
- The Equation of motion becomes:
- The steady solution of a damped mass-spring system is assumed to be take the form of harmonic excitation of floor i.e:
Where,
X_o : The amplitude of the steady-state vibration.
α: The phase angle ( α )
- The steady state solution is independent from system's initial conditions and only depends on the system parameters and the base excitation conditions.
- The general amplitude ( X_o ) for a damped system is given by the relation:
Where,
r = Frequency ratio =
- We will use the one of the constraints given to limit the amplitude of steady state oscillation ( Xo ≤ 10 mm ):
- We will use the expression for steady state amplitude of oscillation ( Xo ) and determine a function of frequency ratio ( r ) and damping ratio ( ζ ):
- Solve the inequality ( quadratic ):
- The equivalent stiffness of the system is due to the parallel arrangement of the identical springs:
- Therefore,
- The minimum stiffness of spring is minimum of the two values:
k = 15.62 MN/m
B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.
C Yes, the water particles moved toward the island while the energy remained above the earthquake.
Answer:u=42.29 m/s
Explanation:
Given
Horizontal distance=167 m
launch angle
Let u be the initial speed of ball
Range
Answer:
The boiling point of Acetone is 329K (in 3 significant figures)
Explanation:
Boiling point of Acetone = 56°C = 56 + 273K = 329K (in 3 significant figures)
Answer: using the formula 0°C + 273.15 = 273.15K the boiling point in units of kelvin to significant figures is 329.15k.
Explanation: The boiling point of a substance ( acetone) is the temperature at which the vapour pressure of the liquid substance equals the pressure surrounding it. The boiling point of acetone serves as it's characteristic physical properties. This is measured in degree Celsius (°C ) which can be converted to units of Fahrenheit or kelvin. To convert degree Celsius to kelvin this formula is used: 0°C + 273.15 = 273.15K . Given that acetone has boiling point of 56°C,from the formula 0°C is substituted for 56°C. This gives us:
56°C + 273.15= 319.15k.
Also,measurements given in Kelvin will always be larger numbers than in Celsius and the Kelvin temperature scale does not use the degree (°) symbol because Kelvin is an absolute scale, based on absolute zero, while the zero on the Celsius scale is based on the properties of water. I hope this helps. Thanks
Answer:
Explanation:
The uncertainty in energy is given by
here h is plank's constant which value is and is the time interval which is given as
So using all the parameters the smallest possible uncertainty in electrons energy is