Answer:
The horizontal distance is 4.823 m
Solution:
As per the question:
Mass of man, m = 65.0 kg
Height of the hill, H = 5.00 m
Mass of the backpack, m' = 20.0 kg
Height of ledge, h = 2 m
Now,
To calculate the horizontal distance from the edge of the ledge:
Making use of the principle of conservation of energy both at the top and bottom of the hill (frictionless), the total mechanical energy will remain conserved.
Now,
where
KE = Kinetic energy
PE = Potential energy
Initially, the man starts, form rest thus the velocity at start will be zero and hence the initial Kinetic energy will also be zero.
Also, the initial potential energy will be converted into the kinetic energy thus the final potential energy will be zero.
Therefore,
where
v = velocity at the hill's bottom
Now,
Making use of the principle of conservation of momentum in order to calculate the velocity after the inclusion, v' of the backpack:
Now, time taken for the fall:
Now, the horizontal distance is given by:
x = v't =
Answer
given,
mass of the man = 65 kg
height = 5 m
mass of the back pack = 20 kg
skis off to 2.00 m high ledge
horizontal distance =
speed of the person before they grab back pack is equal to potential and kinetic energy
v = 9.89 m/s
now he perform elastic collision
v = 7.57 m/s
time taken by the skies to fall is
t = 0.6388 s
distance
d = v x t
d = 7.57 x 0.6388
d = 4.84 m
Answer:
Hey
Explanation:
Answer:
2.29e-9C/m²
Explanation:
Using E = σ/ε₀ means the force on the electron is F = eE = eσ/ε₀.
The work done on the electron is W = Fd = deσ/ε₀. This equals the kinetic energy lost, ½mv².
½mv² = deσ/ε₀
d = 75cm – 15cm = 60cm = 0.6m
σ = mv²ε₀/(2de)
. .= 9.11e-31 * (7.4e6)² * 8.85e-12 / (2 * 0.6 * 1.6e-19)
. .= 2.29e-9 C/m² (i.e. 2.29x10^-9 C/m²)
Answer:
Explanation:
Let length of the pendulum be l . The expression for time period of pendulum is as follows
T = 2π
For Mars planet ,
1.5 =
For other planet
.92 =
Squiring and dividing the two equations
The second planet appears to be earth.
A weather pattern is defined as a period of time when the weather remains consistent. In the lab, a lot of observation about weather is obtained
A weather pattern is defined as a period of time when the weatherremains consistent. Weather changes are crucial to humanexistence.
because they influence our everyday activities and provide moisture for crops.
The rain does not always end within the day, and gloomy days might last just as long as sunny days. Tornadoes and hurricanes, for example, may inflict tremendous damage.
In the lab the following observation about weather is obtained;
1. We will find the graphs and statistics that indicate signs of climate change and engage with an interactivegraphic.
2. You'll also look at and debate maps of global temperature and precipitation patterns that are changing.
3. This lab will teach you about Earth's biomes and the close relationship that exists between them and the climates that serve to define them.
To learn more about the weatherpattern refer to the link;
The question pertains to meteorology, climatology, and atmospheric science. These are disciplines that study weather and climate, respectively, and their effects on the planet. Atmospheric Science is a broad field that includes both and employs physics principles.
The question refers to the subjects of meteorology, climatology, and atmospheric science. Meteorology is the study of the atmosphere, atmospheric phenomena, and atmospheric impacts on the Earth's weather. It involves the prediction of weather in the short term based on thousands of measurements of variables such as air pressure and temperature.
Climatology, on the other hand, is the study of climate, which involves analyzing averaged weather conditions over longer time periods using atmospheric data. Unlike meteorologists, climatologists focus on patterns and effects that occur over longer timescales of decades, centuries, and millennia.
Atmospheric Science is a broad field that encompasses both meteorology and climatology, as well as other disciplines that study the atmosphere. This discipline is typically based heavily on physics and involves the study of weather and climate patterns, predictions of developments in weather and climatic events, and the analysis of the effects of these events on the planet and its inhabitants.
#SPJ11
B. 1.65 m/s
C. 10.4 m/s
D. 1040 m/s
Answer:
Maximum speed ( v ) = 10.4 m/s (Approx)
Explanation:
Given:
Amplitude A = 15.0 cm = 0.15 m
Frequency f = 11.0 cycles/s (Hz)
Find:
Maximum speed ( v )
Computation:
Angular frequency = 2πf
Angular frequency = 2π(11)
Angular frequency = 69.14
Maximum speed ( v ) = WA
Maximum speed ( v ) = 69.14 x 0.15
Maximum speed ( v ) = 10.371
Maximum speed ( v ) = 10.4 m/s (Approx)