(a) 9.8 m/s^2, downward
There is only one force acting on the ball while it is in flight: the force of gravity, which is
F = mg
where
m is the mass of the ball
g is the gravitational acceleration
According to Newton's second law, the force acting on the ball is equal to the product between the mass of the ball and its acceleration, so
F = mg = ma
which means
a = g
So, the acceleration of the ball during the whole flight is equal to the acceleration of gravity:
g = -9.8 m/s^2
where the negative sign means the direction is downward.
(b) v = 0
Any object thrown upward reaches its maximum height when its velocity is zero:
v = 0
In fact, at that moment, the object's velocity is turning from upward to downward: that means that at that instant, the velocity must be zero.
(c) 8.72 m/s, upward
The initial velocity of the ball can be found by using the equation:
v = u + at
Where
v = 0 is the velocity at the maximum height
u is the initial velocity
a = g = -9.8 m/s^2 is the acceleration
t is the time at which the ball reaches the maximum height: this is half of the time it takes for the ball to reach again the starting point of the motion, so
So we can now solve the equation for u, and we find:
(d) 3.88 m
The maximum height reached by the ball can be found by using the equation:
where
v = 0 is the velocity at the maximum height
u = 8.72 m/s is the initial velocity
a = g = -9.8 m/s^2 is the gravitational acceleration
d is the maximum height reached
Solving the equation for d, we find
Answer:
False
Explanation:
Sun mass is dominating in Solar system as compared to other planets, asteroids and comets. Sun itself accounting for the 99.9% of the mass of the solar system. Hence the gravitational force exerted by the Sun dominates the other objects in the solar system. So we can conclude that solar system has non-uniform composition. The given statement is false
Given:-
Speed = 36 km/hr
converting speed into m/s
Speed = 36*5/18
Speed = 10 m/s
t = 10 sec
By using the Formula
Distance = Speed * time
D = 10*10
D = 100 m
Hope it helps....
This question involves the concepts of derivative, apparent temperature, actual temperature,and wind speed.
The drop in apparent temperature will be "1.25°C".
The apparent temperature (W) is given in terms of actual temperature (T) and wind speed (v) is given by the following function:
Taking the derivative with respect to actual temperature, we get:
where,
dW = drop in apparent temperatures = ?
dT = drop in actual temperature = - 1°C
v = wind speed = 18 km/h
Therefore,
dW = - 1.25°C
Learn more about derivatives here:
Answer:
Δw=1.25°C
Explanation:
Given that
Given that T= 12°C and v=19 km/h
Now to find the drop in the apparent temperature w
So
Now by putting the values v=19 km/hr and ΔT=1
Δw=1.25°C
So we can say that when temperature is decrease by 1°C then apparent temperature will decrease by 1.25°C at given velocity.
Answer:
F=4500N
Explanation:
F=m×g
F=1500kg×3m/s²
F=4500N
Answer:
F=4500N
Explanation:
F=m×g
F=1500kg×3m/s²
F=4500N
Answer:
The magnitude of the horizontal displacement of the rock is 7.39 m/s.
Explanation:
Given that,
Initial speed = 11.5 m/s
Angle = 50.0
Height = 30.0 m
We need to calculate the horizontal displacement of the rock
Using formula of horizontal component
Put the value into the formula
Hence, The magnitude of the horizontal displacement of the rock is 7.39 m/s.
The question is about determining the horizontal displacement of a projectile based on the given initial speed and projection angle and the height of the launch. This can be calculated using the equations of motion, specifically those pertaining to projectile motion.
In this problem, we're dealing with projectile motion. The stone being thrown is the projectile in this case. The horizontal displacement, also known as range, of a projectile can be defined using the formula: range = (initial speed * time of flight) * cosθ, where θ is the angle of projection. The initial speed is given as 11.5 m/s and the angle as 50 degrees. Now, we need to calculate the time of flight. This can be found by the formula: time of flight = (2 * initial speed * sinθ) / g. Considering g, the acceleration due to gravity, as 9.8 m/s², we can find the time of flight and thus calculate the range. Always remember that while the vertical motion of a projectile is affected by gravity, the horizontal motion remains constant.
#SPJ12
producers
decomposers
heterotrophs
Answer:
Explanation:
Decomposers is the correct answer
Answer:
Decomposers is the right answer
Explanation:
Maggots are decomposers because they eat the dead bodys for energy
I don't know if the thing I wrote it truse so ya