Answer:
The exponent A in the equation is 3.
Explanation:
v = a^2 t^ A /x
Therefore, the exponent A in the equation is 3.
Answer:
Explanation:
Given
mass of saturated liquid water
at specific volume is (From Table A-4,Saturated water Temperature table)
Final Volume
Specific volume at this stage
Now we see the value and find the temperature it corresponds to specific volume at vapor stage in the table.
The problem in the question is solved using the principles of thermodynamics. The volume of the device after the heat transfer is 6311.2 cm³. The final temperature inside the cylinder, when the water reached the state of saturated vapor, is approximately 240°C.
The subject question is a thermodynamics problem; more specifically dealing with changes of state, volume, and temperature in a system under certain conditions.
For solving part (a), one would first need to find the specific volume (v) at the initial state, which is saturated liquid at 200°C. Looking up in the property tables, we see that v = 1.127 cm³/g for saturated water at 200°C. Then, the initial volume (V) is mass times specific volume, so V = 1.4 kg x 1.127cm³/g x 1000g/kg = 1577.8 cm³. Because volume quadrupled, the final volume is 4 x 1577.8 cm³ = 6311.2 cm³.
For part (b), at the final state, the water is a saturated vapor. The specific volume at the final state is the final volume divided by the mass, which equals to 6311.2 cm³ / 1.4kg / 1000g/kg = 4.507 cm³/g. Look this value up in the property table to find the corresponding temperature. We get a final temperature of about 240°C.
#SPJ3
Answer:
The final temperature is 50.8degrees celcius
Explanation:
Pls refer to attached handwritten document
Answer: 50.63° C
Explanation:
Given
Length of heater, L = 200 mm = 0.2 m
Diameter of heater, D = 15 mm = 0.015 m
Thermal conductivity, k = 5 W/m.K
Power of the heater, q = 25 W
Temperature of the block, = 35° C
T1 = T2 + (q/kS)
S can be gotten from the relationship
S = 2πL/In(4L/D)
On substituting we have
S = (2 * 3.142 * 0.2) / In (4 * 0.2 / 0.015)
S = 1.2568 / In 53.33
S = 1.2568 / 3.98
S = 0.32 m
Proceeding to substitute into the main equation, we have
T1 = T2 + (q/kS)
T1 = 35 + (25 / 5 * 0.32)
T1 = 35 + (25 / 1.6)
T1 = 35 + 15.625
T1 = 50.63° C
circulararc whose radius is 0.29 m. What isthe speed of the
ball?
Answer:
v = 0.85 m/s
Explanation:
Given that,
Mass of the ball, m = 0.01 kg
Centripetal force on the ball, F = 0.025 N
Radius of the circular path, r = 0.29 m
Let v is the speed of the ball. The centripetal force of the ball is given by :
v = 0.85 m/s
So, the speed of the ball is 0.85 m/s. Hence, this is the required solution.
Answer:
Taking the x axis to the right and the y axis to be up, the total change of momentum is
Explanation:
The momentum is given by:
where m is the mass and is the velocity. Now, taking the suffix i for the initial condition, and the suffix f for the final condition, the change in momentum will be:
As we know the mass of the ball, we just need to find the initial and final velocity.
Knowing the magnitude and direction of a vector, we can obtain the Cartesian components with the formula
where is the magnitude of the vector and θ is the angle measured from the x axis.
Taking the x axis to the right and the y axis to be up, the initial velocity will be:
where minus sign appears cause the ball is going downward, and we subtracted the 31 ° as it was measured from the y axis
So, the initial velocity is
The final velocity is
So, the change in momentum will be
Answer:
(a) t=3.87 s :time at which Kathy overtakes Stan
(b) d=37.36 m
(c) vf₁ = 15.097 m/s : Stan's final speed
vf₂ = 19.31 m/s : Kathy's final speed
Explanation:
kinematic analysis
Because Kathy and Stan move with uniformly accelerated movement we apply the following formulas:
vf= v₀+at Formula (1)
vf²=v₀²+2*a*d Formula (2)
d= v₀t+ (1/2)*a*t² Formula (3)
Where:
d:displacement in meters (m)
t : time in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Nomenclature
d₁: Stan displacement
t₁ : Stan time
v₀₁: Stan initial speed
vf₁: Stan final speed
a₁: Stan acceleration
d₂: car displacement
t₂ : Kathy time
v₀₂: Kathy initial speed
vf₂: Kathy final speed
a₂: Kathy acceleration
Data
v₀₁ = 0
v₀₂ = 0
a₁ = 3.1 m/s²
a₂= 4.99 m/s²
t₁ = (t₂ +1) s
Problem development
By the time Kathy overtakes Stan, the two will have traveled the same distance:
d₁ = d₂
t₁ = (t₂ +1)
We aplpy the Formula (3)
d₁ = v₀₁t₁ + (1/2)*a₁*t₁²
d₁ = 0 + (1/2)*(3.1)*t₁²
d₁ = 1.55*t₁² ; Stan's cinematic equation 1
d₂ = v₀₂t₂ + (1/2)*a₂*t₂²
d₂ = 0 + (1/2)*(4.99)*t₂²
d₂ = 2.495* t₂² : Kathy's cinematic equation 2
d₁ = d₂
equation 1=equation 2
1.55*t₁² = 2.495* t₂² , We replace t₁ = (t₂ +1)
1.55* (t₂ +1) ² =2.495* t₂²
1.55* (t₂² +2t₂+1) =2.495* t₂²
1.55*t₂²+1.55*2t₂+1.55 = 2.495* t₂²
1.55t₂²+3.1t₂+1.55=2.495t₂²
(2.495-1.55)t₂² - 3.1t₂ - 1.55 = 0
0.905t₂² - 3.1t₂ - 1.55 = 0 Quadratic equation
Solving the quadratic equation we have:
(a) t₂ = 3.87 s : time at which Kathy overtakes Stan
(b) Distance in which Kathy catches Stan
we replace t₂ = 3.87 s in equation 2
d₂ = 2.495*( 3.87)²
d₂ = 37.36 m
(c) Speeds of both cars at the instant Kathy overtakes Stan
We apply the Formula (1)
vf₁= v₀₁+a₁t₁ t₁ =( t₂+1 ) s=( 3.87 + 1 ) s = 4.87 s
vf₁= 0+3.1* 4.87
vf₁ = 15.097 m/s : Stan's final speed
vf₂ = v₀₂+a₂ t₂
vf₂ =0+4.99* 3.87
vf₂ = 19.31m/s : Kathy's final speed
Answer:
When the jet reaches a speed of 181 m/s, its displacement is 296 m.
Explanation:
Hi there!
The equation of position and velocity of an object traveling with constant acceleration along a straight line are the following:
x = x0 + v0 · t + 1/2 · a · t²
v = v0 + a · t
Where:
x = position of the object at time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
v = velocity of the object at time t.
If we place the origin of the frame of reference at the point where the jet starts moving, then, x0 = 0. Since the jet starts from rest, v0 is also zero. Then the equations get reduced to the following:
x = 1/2 · a · t²
v = a · t
We know the acceleration and the final velocity of the jet. So, using the equation of velocity, we can find the time it takes the jet to reach that velocity. Then, we can calculate the position of the jet at that time. Since the initial position is zero, the final position of the jet will be equal to the displacement (because displacement = final position - initial position).
v = a · t
v/a = t
181 m/s / 55.3 m/s² = t
t = 3.27 s
The final position of the jet will be:
x = 1/2 · a · t²
x = 1/2 · 55.3 m/s² · (3.27 s)²
x = 296 m
When the jet reaches a speed of 181 m/s, its displacement is 296 m.
The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.
To find displacement using constant acceleration,
we can use the following equation:
displacement = (final velocity)^2 - (initial velocity)^2 / 2 * acceleration.
In this case, the initial velocity is 0 m/s and the final velocity is 181 m/s.
The acceleration is given as 55.3 m/s^2.
Plugging in these values, we get:
displacement = (181)^2 - (0)^2 / 2 * 55.3 = 16515 m.
The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.
Learn more about displacement here:
#SPJ3