Answer:
Power of the source is 7.7 W
Explanation:
As we know that the sound level is measured as
now we have
so we have
now power of the source is given as
Answer:
Length
Time
Mass
Temperature
Energy
Direct Current (DC)
Frequency
Volume
Speed
Amount of substance
Luminous Intensity
Density
Concentration
Refractive Index
Work
Pressure
Power
Charge
Electric Potential
Entropy
Answer:
2.72 m
Explanation:
wavelength of sound λ = velocity / frequency
= 340 / 1200
= .2833 m
Distance of point of first constructive interference
= λ D / d ( D is distance of the screen and d is distance between source of sound.
Here D = 12.5 m
d = 1.3 m
λ D / d= ( .2833 x 12.5) / 1.3
= 2.72 m
Distance of point of first constructive interference = 2.72 m
The wavelength of the produced sound is approximately 0.29 m. Constructive interference occurs when the path difference between the two waves is a multiple of this wavelength, allowing you to calculate the distance between the central maximum and first maximum loud position.
For part (a) of the question, we need to calculate the wavelength of the sound wave. The wave speed (v) is given by the multiplication of frequency (f) and wavelength (λ). The speed of sound in air is approximately 343 m/s and given that the frequency produced by the function generator is 1200 Hz, the wavelength can be calculated using the formula λ = v / f = 343 / 1200 ≈ 0.29 m.
For part (b) the distance between the central maximum (loud) position and the first maximum along this line requires understanding of sound wave interference and constructive interference. For constructive interference to occur, the path difference between the two waves needs to be a multiple of the wavelength. Thus, in the first constructive interference position (first maximum loud position), the path difference equals one wavelength (0.29m). Since the student is walking 12.5 m away and parallel to the line between the speakers (which is the hypotenuse of a right triangle stakeout, with one side being 0.65m), we can use Pythagorean theorem to find out the distance.
#SPJ11
To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as
The potential energy,
The volume,
The potential energy per unit volume is defined as the energy density.
The energy density related with electric field is given by
Here, the permitivity of the free space is
Therefore, rerranging to find the electric field strength we have,
Therefore the electric field is 2.21V/m
To calculate the electric field strength that would store 12.5 Joules of energy in every 6.00 mm^3 of space, we use the energy density formula. We firstly find the energy density and input it into the formula to solve for the electric field strength. The result is approximately 6.87 X 10^6 N/C.
The energy stored in an electric field is given by the formula U = 1/2 ε E^2. Here, U is the energy density (energy per unit volume), E is the electric field strength, and ε is the permittivity of free space.
Given that the energy stored U is 12.5 joules, and the volume is 6.00 mm^3 or 6.00X10^-9 m^3, the energy density (U) can be computed as 12.5 J/6.00X10^-9 m^3 = 2.08X10^12 Joule/meter^3.
We can solve the formula for E (electric field strength): E = sqrt ((2U)/ε). Substituting the value of ε (8.85 × 10^-12 m^-3 kg^-1 s^4 A^2), we can find E to be approximately 6.87 X 10^6 N/C.
Learn more about Electric Field Strength here:
#SPJ3
Answer:
speeds above 343 m/s
Explanation:
I have taken the test got 100%
Write the velocity vectors in component form.
• initial velocity:
v₁ = 4 m/s at 45º N of E
v₁ = (4 m/s) (cos(45º) i + sin(45º) j)
v₁ ≈ (2.83 m/s) i + (2.83 m/s) j
• final velocity:
v₂ = 4 m/s at 10º N of E
v₂ = (4 m/s) (cos(10º) i + sin(10º) j)
v₂ ≈ (3.94 m/s) i + (0.695 m/s) j
The average acceleration over this 3-second interval is then
a = (v₂ - v₁) / (3 s)
a ≈ (0.370 m/s²) + (-0.711 m/s²)
with magnitude
||a|| = √[(0.370 m/s²)² + (-0.711 m/s²)²] ≈ 0.802 m/s²
and direction θ such that
tan(θ) = (-0.711 m/s²) / (0.370 m/s²) ≈ -1.92
→ θ ≈ -62.5º
which corresponds to an angle of about 62.5º S of E, or 27.5º E of S. To use the notation in the question, you could say it's E 62.5º S or S 27.5º E.