Answer:
3.27 turns
Explanation:
To find how many turns (θ) will the stone make before coming to rest we will use the following equation:
Where:
: is the final angular velocity = 0
: is the initial angular velocity = 71.150 rpm
α: is the angular acceleration
First, we need to calculate the angular acceleration (α). To do that, we can use the following equation:
Where:
I: is the moment of inertia for the disk
τ: is the torque
The moment of inertia is:
Where:
m: is the mass of the disk = 105.00 kg
r: is the radius of the disk = 0.297 m
Now, the torque is equal to:
Where:
F: is the applied force = 46.650 N
μ: is the kinetic coefficient of friction = 0.451
The minus sign is because the friction force is acting opposite to motion of grindstone.
Having the moment of inertia and the torque, we can find the angular acceleration:
Finally, we can find the number of turns that the stone will make before coming to rest:
I hope it helps you!
Find the magnitude and direction of the electric field.
Answer:
N/C
N/C
Explanation:
The charge per unit area of the two non-conducting slabs are given by:
The charge density on the metal
ε0 = 8.854 x 10-12 C2/N m2
Note that the electric field inside the conductor is zero because it is an equipotential surface.
The diagram attached to this solution typifies the description given in the question:
The electric field in the region C can be calculated by:
The electric field in the region A can be calculated by:
☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️✌️✌️✌️✌️✌️✌️✌️✌️❤️❤️❤️
To determine the tension in the string that connects M2 and M3, we can follow these steps:
Step 1: Identify the necessary variables. Given data (for example) could be:
- Mass of M2, which is 5 kg
- Mass of M3, which is 10 kg
- The acceleration due to gravity, which is approximately 9.8 m/s²
- The angle at which the string pulls on M2, which is 30 degrees
- Assume the system is in equilibrium, meaning there is no net acceleration, so the acceleration is 0 m/s²
Step 2: Calculate the weight of M3, which is its mass times the acceleration due to gravity. This is because weight is the force exerted by gravity on an object, which equals the object's mass times the acceleration due to gravity.
For M3, this calculation would be M3 * g = 10 kg * 9.8 m/s² = 98 N (Newtons).
Step 3: Determine the force exerted by M2 that acts along the line of the string. This won't be the full weight of M2, because the string pulls at an angle. This component of the force can be calculated using the sine of the angle, because sine gives us the ratio of the side opposite the angle (here, the force along the string) to the hypotenuse (here, the full weight of M2) in a right triangle.
The horizontal component of the force of M2 is then M2 * g * sin(30deg) = 5 kg * 9.8 m/s² * sin(30deg) = 24.5 N.
Step 4: The tension in the string is the force M3 exerts on it, which is its weight, minus the component of M2's weight that acts along the string. This is because M2 and M3 are pulling in opposite directions, so they subtract from each other.
The tension in the string is then the weight of M3, 98 N, minus the horizontal (along the string) component of M2's weight, 24.5 N.
So, the tension in the string is 98 N - 24.5 N = 73.5 N.
This is the force that the string needs to exert in order to keep M2 and M3 connected and in equilibrium.
Learn more about Tension in a string here:
#SPJ12
The rotation of Uranus, like that of Venus, is retrograde and its axis of rotation is inclined almost ninety degrees above the plane of its orbit. During its orbital period of 84 years one of the poles is permanently illuminated by the Sun while the other remains in the shade. Exactly its rotation period is equivalent to 17 hours and 14 Earth minutes and its translation period is equivalent to 84 years, 7 days and 9 Earth hours.
Only a narrow band around the equator experiences a rapid cycle of day and night, but with the Sun very low on the horizon as in the polar regions of the Earth. On the other side of the orbit of Uranus, the orientation of the poles in the direction of the Sun is inverse. Each pole receives about 42 years of uninterrupted sunlight, followed by 42 years of darkness. Therefore an observer at latitude of 45 degrees in Uranus will probably experience a long winter night that is equivalent to one third of the year uranium.
Answer:
where m = mass, g = acceleration due to gravity (9.8 m/s^2), h = height
Given m = 500g = 0.5 kg, h = 9 meters
0.5*9*9.8 = 44.1 joules
Explanation:
Answer:44.1
Explanation:
We are given:
Mass of the Paint bucket (with paint) = 7000 grams
Mass of the paint bucket (without paint) = 500 grams
Volume of Paint in the Bucket = 5000 cm³
Mass of Paint in the Bucket:
To get the mass of the paint in the bucket, we will subtract the mass of the bucket from the mass of the paint bucket (with paint)
Mass of Paint = Mass of Paint bucket (with paint) - Mass of the paint Bucket (without paint)
Mass of Paint = 7000 - 500
Mass of Paint = 6500 grams
Density of the Paint:
We know that density = Mass / Volume
Density of Paint = Mass of Paint / Volume occupied by Paint
Density of Paint = 6500/5000
Density of Paint = 1.3 grams / cm³
Answer:
9.93 MPa
Explanation:
Given:
- mass of the man = 68.4 kg
- Deflection dx = 5.2 cm
- thickness of plank t = 2.0 cm
- width of plank w = 13.0 cm
- Length subtended L = 2.0 m
Find:
Shear Modulus of Elasticity S :
S = shear stress / shear strain
Shear stress = F / A
Shear stress = 68.4*9.81 / 0.02*0.13
Shear stress = 258078.4615 Pa
Shear strain = dx / L
Shear Strain = 0.052 / 2
Shear Strain = 0.026
Hence,
S = 258078.4615 / 0.026
S = 9.93 MPa