Answer:
Explanation:
We can solve for the final angular velocity of the system using the law of momentum conservation
Where is the moments of inertia of the disk before. is the moments of inertia of the disk after (if we treat the clay as a point particle). is the angular speed before.
So the final momentum of the system is 27.5 kgm2/s
Answer:
The final angular momentum is 35.75 kg.m²/s
Explanation:
Given;
mass of disk, M = 5 kg
radius of disk, R = 1 m
mass of clay, M = 3 kg
radius of clay, R = 0.5 m
final angular momentum, = 11 rad/s
Final angular momentum angular momentum of the disk that the clay lumped with;
where;
is the final moment of inertia
Final angular momentum of the disk;
=
= 3.25 x 11 = 35.75 kg.m²/s
Therefore, the final angular momentum is 35.75 kg.m²/s
Answer:
3
Explanation:
10⁰ = 1 because anything to the power of 0 is 1.
3×1= 3
Answer:
a) TB = m2 * w^2 * 2*d
b) TA = m1 * w^2 * d + m2 * w^2 * 2*d
Explanation:
The tension on the strings will be equal to the centripetal force acting on the boxes.
The centripetal force is related to the centripetal acceleration:
f = m * a
The centripetal acceleration is related to the radius of rotation and the tangential speed:
a = v^2 / d
f = m * v^2 / d
The tangential speed is:
v = w * d
Then
f = m * w^2 * d
For the string connecting boxes 1 and 2:
TB = m2 * w^2 * 2*d
For the string connecting box 1 to the shaft
TA = m1 * w^2 * d + m2 * w^2 * 2*d
Answer:
They had a well-developed agricultural system , they raised domesticated animals , they developed a writing system, and they used early forms of tools.
The claim that the ancient Egyptians were primitive and relied on aliens to build their monuments is inaccurate. Evidence from archaeology and history shows that the ancient Egyptians had advanced knowledge and skills in various fields. Their construction techniques and use of mathematics in building the pyramids are well-documented.
The claim that the ancient Egyptians were primitive and that their accomplishments, such as building the pyramids, were assisted by aliens is inaccurate. There is evidence from archaeology and history that ancient monuments were built by ancient people using their own ingenuity and capabilities. The ancient Egyptians had advanced knowledge in various fields including architecture, engineering, astronomy, and mathematics. For example, their construction techniques and use of mathematics in building the pyramids and other structures are well-documented.
(a) Length of the wire is 3.162 m
(b)Power delivered to the coil is 339.7 W
The electrical power is given by
P = V² / R
R = V² / P
Resistance of the heating coil, R
R = (110² / 500)
R = 12100 / 500
R = 24.2 Ω
Now the resistivity of a wire is given by
ρ= RA/L
here ρ = 1.50×10⁻⁶ Ωm
so after rearranging we get:
L = RA / ρ
Now, the radius of wirer = 0.5 / 2 mm = 0.25 mm = 2.5×10⁻⁴ m
So the cross sectional area can be calculated as follows
hence,
(b)The dependency of resistance with temperature is as follows:
R = R₀[1 + αΔT]
α = for Nichrome
So the power generated is :
P = V² / R
P = (110² / 35.62)
P = 12100/ 35.62
P = 339.70 watts
Learn more about electrical power:
Answer:
a) 3.162 m
b) 339.7 W
Explanation:
Assume ρ = 1.50*10^-6 Ωm, and
α = 4.000 10-4(°C)−1 for Nichrome
To solve this, we would use the formula
P = V² / R
So when we rearrange and make R subject of formula, we have
R = V² / P
Resistance of the heating coil, R
R = (110² / 500)
R = 12100 / 500
R = 24.2 ohms
Recall the formula for resistivity of a wire
R = ρ.L/A
Again, in rearranging and making L subject of formula, we have
L = R.A / ρ
To make it uniform, we convert our radius from mm to m.
Diameter, D = 0.5 mm
Radius of wire = 0.5 / 2 mm = 0.25 mm = 0.00025 m
We then use this radius to find our area
A = πr²
A = π * 0.00025²
A = 1.96*10^-7 m²
And finally, we solve for L
L = (24.2 * 1.96*10^-7 / 1.50*10^-6) =
L = 3.162 m
(b)
Temperature coefficient of resistance.
R₁₂₀₀ = R₂₀[1 + α(1200 - 20.0) ]
R₁₂₀₀ = R₂₀[1 + α(1180) ]
R₁₂₀₀ = 24.2[ 1 + 4.*10^-4 * 1180 ]
R₁₂₀₀ = 24.2[1 + 0.472]
R₁₂₀₀ = 24.2 * 1.472
R₁₂₀₀ = 35.62 ohms
Putting this value of R in the first formula from part a, we have
P = V² / R
P = (110² / 35.62)
P = 12100/ 35.62
P = 339.70 watts
Answer:
v=9.6 km/s
Explanation:
Given that
The mass of the car = m
The mass of the truck = 4 m
The velocity of the truck ,u= 12 km/s
The final velocity when they stick = v
If there is no any external force on the system then the total linear momentum of the system will be conserve.
Pi = Pf
m x 0 + 4 m x 12 = (m + 4 m) x v
0 + 48 m = 5 m v
5 v = 48
v=9.6 km/s
Therefore the final velocity will be 9.6 km/s.