Answer:
The empirical formula is C3H5
Explanation:
Step 1: Data given
Mass of the compound = 7.80 grams
Mass of CO2 = 25.1 grams
Molar mass of CO2 = 44.01 g/mol
Mass of H2O = 8.55 grams
Molar mass of H2O = 18.02 g/mol
Molar mass C = 12.01 g/mol
Molar mass H = 1.01 g/mol
Molar mass O = 16.0 g/mol
Step 2: Calculate moles CO2
Moles CO2 = mass CO2 / molar mass CO2
Moles CO2 = 25.1 grams / 44.01 g/mol
Moles CO2 = 0.570 moles
Step 3: Calculate moles C
For 1 mol CO2 we have 1 mol C
For 0.570 moles CO2 we have 0.570 moles C
Step 4: Calculate mass C
Mass C = 0.570 moles * 12.01 g/mol
Mass C = 6.846 grams
Step 5: Calculate moles H2O
Moles H2O = 8.55 grams / 18.02 g/mol
Moles H2O = 0.474 moles
Step 6: Calculate moles H
For 1 mol H2O we have 2 moles H
For 0.474 moles H2O we have 2*0.474 = 0.948 moles H
Step 7: Calculate mass H
Mass H = 0.948 moles * 1.01 g/mol
Mass H = 0.957 grams
Step 8: Calculate mol ratio
We divide by the smallest amount of moles
C: 0.570 moles / 0.570 = 1
H: 0.948 moles / 0.570 = 1.66
This means for 1 mol C we have 1.66 moles H OR for 3 moles C we have 5 moles H
The empirical formula is C3H5
To find the empirical formula of the hydrocarbon, divide the moles of CO2 and H2O by their molar masses. Use the smallest mole ratio to determine the empirical formula.
To find the empirical formula of the hydrocarbon, we need to determine the mole ratios between carbon and hydrogen in the compound. First, calculate the moles of CO2 produced by dividing the mass of CO2 by its molar mass. Next, calculate the moles of H2O produced by dividing the mass of H2O by its molar mass. Finally, divide the moles of each element by the smallest number of moles to obtain the mole ratio between carbon and hydrogen. The empirical formula is CnHm, where n and m represent the mole ratios of carbon and hydrogen, respectively.
#SPJ3
b) The final rms molecular speed will be the same for both gases.
c) The final average kinetic energy of a molecule will be the same for both gases.
Answer:
a,c are correct
Explanation:
a) On mixing two gases the final temperature of both the gases becomes the same. The heat will flow from high temp. gas to lower temp gas till the temp of both gases become equal (Thermal equilibrium). This is correct.
b) The rms speed of the molecule is inversely proportional to its molar mass so the final rsm will not be the same. This is incorrect.
c) The average kinetic energy of the system will remain the same. Hence this is also correct.
Answer: 0.522cm3
Explanation:
Mass = 11.2g
Density = 21.45 g/cm3
Volume =?
Volume = Mass /Density
Volume = 11.2 / 21.45
Volume = 0.522cm3
completely neutralize 150.0 milliliters of 0.100 M
NaOH(aq)?
A. 62.5 mL
B. 125 ml
C.
180. mL
D. 360. mL
Answer:
B) 125 mL
Explanation:
M1V1=M2V2
(0.120M)(x)=(150.0 mL)(0.100M)
x= 125 mL
*Text me at 561-400-5105 for private tutoring if interested: I can do homework, labs, and other assignments :)
Answer:
CaCl2 + H2O Ca2+(aq) + 2Cl-(aq)
Explanation:
CaCl2 + H2O Ca2+(aq) + 2Cl-(aq)
When CaCl2 is dissolved in H2O (water) it will dissociate (dissolve) into Ca+2 and Cl- ions.
The dissolution of calcium chloride is an exothermic process.
Answer:
To obtain the pH of 8.0, the concentration of NaOCl needs to be 0.9 M in the 0.3 M HOCl solution
Explanation:
This problem can be solved by Henderson-Hasselbalch equation, which gives relation between the concentration of acid, its salt, pKa and the pH of the solution. This equation is given as,
By placing the known variables in the above equation we get,
The above calculations show that the required concentration of NaOCl is 0.9 M.