Answer:
Ag(s):H2O(l) = 3:2
For 3 moles Ag(s) we'll have 2 moles H2O(l)
Option D is correct
Explanation:
Step 1: Balancing the equation
3 Ag (s) + 4 HNO3 (aq) → 3 AgNO3 (aq) + NO (g) + 2 H2O (l)
3Ag(s) + 4NO ^3- + 4H+ →3Ag+ +3NO3- + +NO + 2H2O
3Ag(s) + NO ^3-(aq) + 4H+(aq) →3Ag+(aq) +NO(g) + 2H2O(l)
Step 2: The ratio between Ag(s) and H2O(l)
Ag(s):H2O(l) = 3:2
For 3 moles Ag(s) we'll have 2 moles H2O(l)
Option D is correct
Answer with double replacement
Answer:
Barium chloride + Sodium phosphate → barium phosphate + sodium chloride
Explanation:
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AC +BD
Chemical equation:
BaCl₂ + Na₃PO₄ → Ba₃(PO₄)₂ + NaCl
Balanced chemical equation:
3BaCl₂ + 2Na₃PO₄ → Ba₃(PO₄)₂ + 6NaCl
The cation and anion of both reactants are exchanged with each other.
Ba²⁺ react with PO₄³⁻ and form Ba₃(PO₄)₂ while Cl⁻ react with Na⁺ and form sodium chloride.
Molecular equation:
Barium chloride + Sodium phosphate → barium phosphate + sodium chloride
A double replacement reaction between barium chloride and sodium phosphate results in the formation of barium phosphate and sodium chloride.
The given chemical equation represents a double replacement reaction. The chemical reactants are barium chloride (BaCl2) and sodium phosphate (Na3PO4). In a double replacement reaction, the cations and anions of the two reactants switch places to form two new compounds.
So here is how the reaction would proceed: BaCl2 + Na3PO4 -> Ba3(PO4)2 + NaCl.
This translates to: Barium chloride reacts with sodium phosphate to form barium phosphate and sodium chloride.
#SPJ11
Answer:
K₂O
Explanation:
Given parameters:
Mass of K = 36.7g
Mass of O = 7.51g
Unknown:
Empirical formula of the compound
Solution:
The empirical formula of a compound is it's simplest ratio by which the elements in the compound combines. It differs from the molecular formula that shows the actual atomic ratios.
To find the empirical formula, follow this process;
Elements K O
Mass 36.7 7.51
Molar
mass 39 16
Number of
moles 36.7/39 7.51/16
0.94 0.47
Divide by
the smallest 0.94/0.47 0.47/0.47
2 1
Empirical formula is K₂O
The empirical formula of the compound composed of 36.7 g of potassium and 7.51 g of oxygen is K2O.
To determine the empirical formula of a compound, we need to find the ratio of the elements present. In this case, we have 36.7 g of potassium and 7.51 g of oxygen. To find the ratio, we need to convert these masses to moles by dividing them by the molar masses of potassium and oxygen. The molar mass of potassium is 39.10 g/mol and the molar mass of oxygen is 16.00 g/mol. Dividing the masses by the molar masses gives us 0.939 mol potassium and 0.469 mol oxygen. The ratio between these two elements is approximately 2:1, so the empirical formula of the compound is K2O.
#SPJ3
Answer: The boiling point of solution is 100.53
Explanation:
We are given:
8.00 wt % of CsCl
This means that 8.00 grams of CsCl is present in 100 grams of solution
Mass of solvent = (100 - 8) g = 92 grams
The equation used to calculate elevation in boiling point follows:
To calculate the elevation in boiling point, we use the equation:
Or,
where,
Boiling point of pure solution = 100°C
i = Vant hoff factor = 2 (For CsCl)
= molal boiling point elevation constant = 0.51°C/m
= Given mass of solute (CsCl) = 8.00 g
= Molar mass of solute (CsCl) = 168.4 g/mol
= Mass of solvent (water) = 92 g
Putting values in above equation, we get:
Hence, the boiling point of solution is 100.53
Here's the answer, I remember doing this problem last year.
23.5 degrees north, 77 degrees west
Answer:
General Characteristics of Acids:
Sour taste (though you should never use this characteristic to identify an acid in the lab) Reacts with a metal to form hydrogen gas. Increases the H+ concentration in water. Donates H+ ions. Turns blue litmus indicator red.
Answer:
Multiply the subscripts of the empirical formula by the value of the ratio of the molar mass of the compound to the empirical molar mass of the compound.
Explanation:
got it right on edge 2020 :)
Answer:
Multiply the subscripts of the empirical formula by the value of the ratio of the molar mass of the compound to the empirical molar mass of the compound.
Explanation: