Answer:
Explanation:
Given:
Potential difference across the membrane (ΔV) = 0.078 V
Thickness of the membrane (Δx) = 7.1 × 10⁻⁹ m
Magnitude of electric field (|E|) = ?
We know that, the electric field due to a potential difference (ΔV) across a distance of Δx is given as:
So, the magnitude of the electric field is calculated by ignoring the negative sign and thus is given as:
Plug in the given values and solve for '|E|'. This gives,
Therefore, the magnitude of the electric field in the membrane is .
The movement of a positively charged particle from point A to point B. the motion-induced electrostatic work done on the positively charged particle.
Whether positively or negatively charged, an object that is neutral will interact with it in a pleasing way. Both positively charged and neutral items attract one another, as do negatively charged and neutral objects. These electrons gather on the further surface of sphere B, depleting the electron supply in sphere A. Therefore, sphere A (which is closer to the rod) obtains a positive charge and sphere B acquires a negative charge when the two spheres separate in the presence of the rod. The change in the particle's electrostatic potential energy in the external field equals the work done by the external force. When a charge is pushed from point A to point B, its potential energy changes, representing the labor of an outside force.
to know more about electrostatic work done please visit.
#SPJ4
Complete Question
The complete question is shown on the first uploaded image
Answer:
The answer is
% higher than
% lower than
Explanation:
From the question we are told that
The first string has a frequency of
The period of the beat is
Generally the frequency of the beat is
Substituting values
From the question
for having a higher tension
So
From the question
Substituting values
% higher than
For having a lower tension
So
From the question
Substituting values
% lower than
The displacement is 100 m to the east.
The displacement can be calculated using the formula:
Displacement = Velocity × Time
In this case, the velocity is 10 m/s to the east and the time is 10 seconds.
So, Displacement = 10 m/s × 10 s = 100 m to the east.
Answer:
(c) 3P/5
Explanation:
The formula to calculate the power is:
where
W is the work done
T is the time required for the work to be done
In the second part of the problem, we have
Work done: 3W
Time interval: 5T
So the power required is
a. +5 με
b. +10 μC
c. +20 μC
d. +40 με
d
Explanation:
because they made contact that means their new force will be the same
Sphere Z is initially charged with +40 C. When it is touched to three other spheres, the charge is evenly distributed among them. The resulting charge on sphere Y is +10 μC.
The initial charge on sphere Z is +40 C. When sphere Z is touched to sphere W, the charge is evenly distributed between the two spheres, resulting in each sphere having a charge of +20 C. Then, when sphere Z is touched to sphere X, the total charge is evenly distributed between all three spheres, resulting in each sphere having a charge of +13.33 C. Finally, when sphere Z is touched to sphere Y, the total charge is evenly distributed between all four spheres, resulting in each sphere having a charge of +10 C. Therefore, the resulting charge on sphere Y is +10 μC (option b).
#SPJ3
Answer:
venus - 2
earth - 3
mars - 4
mercury - 1