What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?

Answers

Answer 1
Answer:

Incomplete question.The complete question is here

What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade? The outer edge of the blade is 21 cm from the center of the blade, and the mass of the outer portion is 7.7 g. Even though the blade is 21cm long, the last 2cm should be treated as if they were at a point 20cm from the center of rotation.

Answer:

F= 0.034 N

Explanation:

Given Data

Outer=2 cm

Edge of blade=21 cm

Mass=7.7 g

Length of blade=21 cm

The last 2cm is treated as if they were at a point 20cm from the center of rotation

To Find

Force=?

Solution

Convert the given frequency to angular frequency

ω = 45 rpm * (2*pi rad / 1 rev) * (1 min / 60 s)

ω= 3/2*π rad/sec

Now to find centripetal force.

F = m×v²/r

F= m×ω²×r

Put the data

F = 0.0077 kg × (3/2×π rad/sec)²× 0.20 m

F= 0.034 N


Related Questions

For every increase in mass the gravitational force blank If the total mass increase by effective for the gravitational force
Convert 56km/h to m/s.​
Let A be the last two digits, and let B be the last three digits, and the C be the sum of the last 4 digits of your 8-digit student ID. (Example: For 20245347, A = 47, B = 347, and C = 19) A train moves at an average speed of (23.0 + A) m/s for (250.0 + B) seconds and then at an average speed of (45.0 + C) m/s for (800.0 + B) seconds. Determine the average speed for the entire time in meters per second (m/s). Round your final answer to 3 significant figures.
Consider a situation where a constant force of 25 N acts on an object having a mass of 2 kg for 3 seconds. What is the work done by the force
To remove 800j of heat the compressor in the fridge does 500j of work. how much heat is released into the room?

A 1.5v battery stores 4.5KJ of energy. How long can it light a flashlight bulb that draws 0.60A​

Answers

Answer:

The 1.5V battery can power the flashlight bulb drawing 0.60A for 83.33 minutes before it is depleted.

Explanation:

To determine how long a 1.5V battery can power a flashlight bulb drawing 0.60A, you can use the formula for calculating the energy (in joules) consumed by an electrical device over time:

Energy (Joules) = Power (Watts) × Time (Seconds)

In this case, the power (P) is given by the product of the voltage (V) and current (I):

Power (Watts) = Voltage (Volts) × Current (Amperes)

So, first, calculate the power consumption of the flashlight bulb:

Power (Watts) = 1.5V × 0.60A = 0.90 Watts

Now, you want to find out how long the battery can power the bulb, so rearrange the energy formula to solve for time:

Time (Seconds) = Energy (Joules) / Power (Watts)

Given that the battery stores 4.5 kJ (kilojoules), which is equivalent to 4,500 joules, and the power consumption is 0.90 watts:

Time (Seconds) = 4,500 J / 0.90 W = 5,000 seconds

Now, to express the time in more practical units, convert seconds to minutes:

Time (Minutes) = 5,000 seconds / 60 seconds/minute ≈ 83.33 minutes

So, the 1.5V battery can power the flashlight bulb drawing 0.60A for approximately 83.33 minutes before it is depleted.

Convert 2.4 milimetre into metre​

Answers

Answer is 0.0024

Explanation

divide the length value by 1000.

Which one of these are true about scale models? a. A map may have a scale model with the proportion of one centimeter to one kilometer. b. A scale model is always smaller than the object it represents, c. A model may be built to different scales.

Answers

Answer:

Option A is true

Explanation:

For option A, it's true because a map that has a scale model with the proportion of one centimeter to one kilometer is known as verbal scale which is a type of scale.

For option B, it's not true because though a scale model is most times always smaller than the object it represents, there are sometimes when the scale model is an enlarged view/representation of a small object.

For option C, it's true because there is no one scale that is confined to just a model. A model can use different scales to depict an object.

Where is information first stored in a human brain​

Answers

Answer:

when u learn something new it goes to ur short term memory

A 10 kg block moving at 10 m/s in a direction 45 degrees above the horizontal. When it has fallen to a point that is 10 m below the initial point measured vertically (without air friction), the block's kinetic energy is closest to

Answers

The block's kinetic energy is closest to 1500 Joules.

Kinetic energy :

The energy is always conserved.

So that, the total kinetic energy will be sum of initial potential energy and kinetic energy during falling.

Given that, mass(m)=10kg, v=10m/s, h=10m,g=10m/s^2

              K.E=(1/2)mv^2 + mgh

              K.E=(1/2)*10*100 + (10*10*10)

              K.E=500 + 1000=1500Joule

The  block's kinetic energy is closest to 1500 Joules.

Learn more about the kinetic energy here:

brainly.com/question/25959744

Answer:

Kinetic energy = 1500 J

Explanation:

The computation of the block's kinetic energy is shown below:

As we know that

Conservation of energy is

PE_i + KE_i = PE_f + KE_f

where,

Initial Potential energy = PE_i = m gh = 10kg× 10m/s^2 × 10m = 1000 J

Initial Kinetic energy = KE_i = (0.5) m V^2 = (0.5) (10 kg) (10 m/s)^2 = 500 J

Final potential energy = PE_f = mgh = 0      

As h = 0 which is at reference line

So

PE_i + KE_i = PE_f + KE_f

Now put these valeus to the above formulas

1000 J + 500 J = 0 + KE_f

After solving this

Kinetic energy = 1500 J

wo balls have the same mass of 5.00 kg. Suppose that these two balls are attached to a rigid massless rod of length 2L, where L = 0.550 m. One is attached at one end of the rod and the other at the middle of the rod. If the rod is held by the open end and rotates in a circular motion with angular speed of 45.6 revolutions per second,

Answers

Answer:

  T_1 =677224.40\ N

Explanation:

given,

mass of the both ball = 5 Kg

length of rod = 2 L            

where L = 0.55 m            

angular speed = 45.6 rev/s

ω = 45.6 x 2 π                      

ω = 286.51 rad/s                

v₁ = r₁ ω₁                        

v₁ =0.55 x 286.51 = 157.58 m/s

v₂ = r₂ ω₂                                

v₂ = 1.10 x 286.51 = 315.161 m/s

finding tension on the first half of the rod

r₁ = 0.55  r₂ = 2 x r₁ = 1.10

  T_1 = m ((v_1^2)/(r_1)+(v_2^2)/(r_2))

  T_1 = 5 ((157.58^2)/(0.55_1)+(315.161^2)/(1.1))

  T_1 =677224.40\ N