Answer:
Negative z-direction.
Explanation:
We need to determine the direction of the magnetic force. Since the velocity of the proton is in the positive x direction, and the magnetic field is in the positive y direction, we know by the vectorial formula (or, alternatively, with the left hand rule) that the magnetic force points in the positive z-direction (also taking into account that the charge is positive), so the electric field should be in the negative z-direction to balance it.
To find the final pressure, use the ideal gas law equation PV = nRT, where P is the initial pressure, V is the initial volume, n is the number of moles of gas, R is the gas constant, and T is the initial temperature. Rearrange the equation and plug in the given values to find that the final pressure is 3.33 bar.
To find the final pressure, we can use the ideal gas law equation: PV = nRT, where P is the initial pressure, V is the initial volume, n is the number of moles of gas, R is the gas constant, and T is the initial temperature.
Since the volume and the amount of air are constant, we can rearrange the equation to solve for the final pressure:
P2 = P1 * (T2 / T1),
where P2 is the final pressure, T2 is the final temperature, and T1 is the initial temperature.
By plugging in the values from the problem, we can find that the final pressure is 3.33 bar.
#SPJ3
Light has wavelength 600 nm in a vacuum ,the frequency of the light is 2 × Hz.
The separation between such a wave motion's crests and troughs would be known as the wavelength of photons.
The total number of waves that pass a specific location in a predetermined amount of time is known as frequency.
Calculation of frequency
Given data:
wavelength = 600 nm = 600 × m
index of refraction = 1.5.
Frequency can be calculated by using the formula:
v = f × wavelength
f = wavelength / v
Where, f = Frequency , v is velocity.
put the given data in above equation.
f = wavelength / v
f = 600 × m / 3 ×
f = 200 × .
f = 2 ×
Therefore, the frequency of the light is 2 × Hz.
To know more about frequency and wavelength
#SPJ3
v = f lambda
in vac ... 3X10^8 = 600x10^-9xf
in glass speed slower, poss 2/3 that of vacuum
Answer:
option B
Explanation:
we know,
change in energy is equal to
proton mass and the neutron mass are roughly the same
so,
now,
we know,
mass of alpha particle is four times mass of the mass of proton.
mα = 4 m_p
less by a factor of √2
Hence, the correct answer is option B
Answer:
B- Velocity
Explanation:
This means gravity makes the Moon accelerate all the time, even though its speed remains constant.
Explanation:
Given data:
Area A = 10 cm×2 cm = 20×10⁻⁴ m²
Distance d between the plates = 1 mm = 1×10⁻³m
Voltage of the battery is emf = 100 V
Resistance = 1025 ohm
Solution:
In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by
Taking natural log on both sides,
(1)
Now we can calculate the capacitance by using the area of the plates.
C = ε₀A/d
=
= 18×10⁻¹²F
Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)
= -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)
= 15×10⁻⁹s
= 15 ns
Answer:
k = 15.62 MN/m
Explanation:
Given:-
- The viscous damping constant, c = 1.8 KNs/m
- The floor oscillation magnitude, Yo = 3 mm
- The frequency of floor oscillation, f = 18 Hz.
- The combined weight of the grinding machine and the wheel, W = 4200 N
- Two springs of identical stiffness k are attached in parallel arrangement.
Constraints:-
- The stiffness k > 3.25 MN/m
- The grinding machine’s steady-state amplitude of oscillation to at most 10 mm. ( Xo ≤ 10 mm )
Find:-
What is the minimum required stiffness of each of the two springs as per the constraints given.
Solution:-
- The floor experiences some harmonic excitation due to the unbalanced engine running in the vicinity of the grinding wheel. The amplitude "Yo" and the frequency "f" of the floor excitation is given
- The floor is excited with a harmonic displacement of the form:
Where,
Yo : The amplitude of excitation = 3 mm
w : The excited frequency = 2*π*f = 2*π*18 = 36π
- The harmonic excitation of the floor takes the form:
- The equation of motion for the floor excitation of mass-spring-damper system is given as follows:
Where,
m: The combined mass of the rigid body ( wheel + grinding wheel body) c : The viscous damping coefficient
k_eq: The equivalent spring stiffness of the system ( parallel )
x : The absolute motion of mass ( free vibration + excitation )
- We will use the following substitutions to determine the general form of the equation of motion:
Where,
w_n: The natural frequency
p = ζ = damping ratio = c / cc , damping constant/critical constant
- The Equation of motion becomes:
- The steady solution of a damped mass-spring system is assumed to be take the form of harmonic excitation of floor i.e:
Where,
X_o : The amplitude of the steady-state vibration.
α: The phase angle ( α )
- The steady state solution is independent from system's initial conditions and only depends on the system parameters and the base excitation conditions.
- The general amplitude ( X_o ) for a damped system is given by the relation:
Where,
r = Frequency ratio =
- We will use the one of the constraints given to limit the amplitude of steady state oscillation ( Xo ≤ 10 mm ):
- We will use the expression for steady state amplitude of oscillation ( Xo ) and determine a function of frequency ratio ( r ) and damping ratio ( ζ ):
- Solve the inequality ( quadratic ):
- The equivalent stiffness of the system is due to the parallel arrangement of the identical springs:
- Therefore,
- The minimum stiffness of spring is minimum of the two values:
k = 15.62 MN/m