Answer:
Explanation:
Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .
This force provides centripetal force for creation of circular motion. If r be the radius of the circular path
Bev = mv² / r
r = mv / Be
2 ) If an electron is accelerated by an electric field created by potential difference V then electric field
= V / d where d is distance between two points having potential difference v .
force on charged particle
electric field x charge
= V /d x e
work done by field
= force x distance
= V /d x e x d
V e
This is equal to kinetic energy created
V e = 1/2 mv²
= 1/2 m (r²B²e² / m² )
V = r²B²e/ 2 m
e / m = 2 V/ r²B²
3 )
B =
In Helmholtz coils , distance between coil is equal to R so Z = R/2
B =
For N turns of coil and total field due to two coils
B =
=
= 9.0 x 10^-7 NI/R
Answer:
Yes, the paths of the two particles cross.
Location of path intersection = ( 1 , 2 , 3)
Explanation:
In order to find the point of intersection, we need to set both locations equal to one another. It should be noted however, that the time for each particle can vary as we are finding the point where the paths meet, not the point where the particles meet themselves.
So, we can name the time of the first particle , and the time of the second particle .
Setting the locations equal, we get the following equations to solve for and :
Equation 1
Equation 2
Equation 3
Solving these three equations simultaneously we get:
2 seconds
4 seconds
Since, we have an answer for when the trajectories cross, we know for a fact that they indeed do cross.
The point of crossing can be found by using the value of or in the location matrices. Doing this for the first particle we get:
Location of path intersection = ( -1 + 2 , 4 - 2 , -1 + 2(2) )
Location of path intersection = ( 1 , 2 , 3)
Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:
n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:
hence, the frequency of the third overtone is 102 Hz
refraction
Olightening
Oreflection
the vacuum effect
Refraction occurs when a light wave enters a substance and its speed suddenly slows down.
When a light wave enters a substance and its speed suddenly slows down, it undergoes a phenomenon known as refraction. Refraction occurs due to the change in speed and direction of light as it passes from one medium to another with a different refractive index. The change in speed causes the light wave to bend, resulting in a change in its path.
The car, accelerating at a constant rate of 2.0 m/s2 from rest, will travel a distance of 144 meters in 12 seconds.
The question pertains to the concept of motion in physics, specifically how distances travelled are influenced by an object's acceleration. The car is accelerating at a constant rate of 2.0 m/s2 from rest. It means that the initial velocity of the car is 0. We can use the formula of motion, s = ut + 0.5at2, where u is the initial velocity, a is the acceleration and t is the time.
In this case, u = 0 (as the car starts from rest), a = 2.0 m/s2 (constant acceleration) and t = 12 seconds. Substituting these values into the formula, we get:
s = 0*12 + 0.5*2*122
Therefore, the car will travel 144 meters in 12 seconds assuming it accelerates at a constant rate.
#SPJ2
The displacement is 100 m to the east.
The displacement can be calculated using the formula:
Displacement = Velocity × Time
In this case, the velocity is 10 m/s to the east and the time is 10 seconds.
So, Displacement = 10 m/s × 10 s = 100 m to the east.
Answer:
E = 0.13 J
Explanation:
At resonance condition we have
now if the frequency is double that of resonance condition then we have
now we have
now average power is given as
Now time period is given as
so total energy consumed is given as