. Using your knowledge of circular (centripetal) motion, derive an equation for the radius r of the circular path that electrons follow in terms of the magnetic field B, the electrons' velocity v, charge e, and mass m. You may assume that the electrons move at right angles to the magnetic field.2. Recall from electrostatics, that an electron obtains kinetic energy when accelerated across a potential difference V. Since we can directly measure the accelerating voltage V in this expierment, but not the electrons' velocity v, replace velocity in your previous equation with an expression containing voltage. The electron starts at rest. Now solve this equation for e/m.

You should obtain e/m = 2V/(B^2)(r^2)

3. The magnetic field on the axis of a circular current loop a distance z away is given by

B = mu I R^2 / 2(R^2 + z^2)^ (3/2)

where R is the radius of the loops and I is the current. Using this result , calculate the magnetic field at the midpoint along the axis between the centers of the two current loops that make up the Helmholtz coils, in terms of their number of turns N, current I, and raidus R.Helmholtz coils are separated by a distance equal to their raidus R. You should obtain:

|B| = (4/5)^(3/2) *mu *NI/R = 9.0 x 10^-7 NI/R

where B is magnetic field in tesla, I is in current in amps, N is number of turns in each coil, and R is the radius of the coils in meters

Answers

Answer 1
Answer:

Answer:

Explanation:

Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .

This force provides centripetal force for creation of circular motion. If r be the radius of the circular path

Bev = mv² / r

r = mv / Be

2 ) If an electron is accelerated by an electric field created by potential difference V then electric field

= V / d where d is distance between two points having potential difference v .

force on charged particle

electric field x charge

= V /d x e

work done by field

= force x distance

= V /d x e x d

V e

This is equal to kinetic energy created

V e = 1/2 mv²

= 1/2 m (r²B²e² / m² )

V = r²B²e/ 2 m

e / m = 2 V/ r²B²

3 )

B = (\mu* I* R^2)/(2(R^2+Z^2)^(3)/(2) )

In Helmholtz coils , distance between coil is equal to R so Z = R/2

B = (\mu* I* R^2)/(2(R^2+(R^2)/(4) )^(3)/(2) )

For N turns of coil and total field due to two coils

B = (\mu* I* N)/(R*((5)/(4))^(3)/(2)  )

= (\mu* I* N)/(R)* ((4)/(5))^(3)/(2)

= 9.0 x 10^-7 NI/R


Related Questions

Determine whether the following statements are true and give an explanation or counterexample.(A) If the acceleration of an object remains constant, its velocity is constant.(B) If the acceleration of object moving along a line is always 0, then its velocity is constant.(C) It is impossible for the instantaneous velocity at all times a(D) A moving object can have negative acceleration and increasing speed.
Exposure to what type of radiant energy is sensed by human skin as warmth? x-rays ultraviolet infrared gamma rays
A businessperson took a small airplane for a quick flight up the coast for a lunch meeting and then returned home. The plane flew a total of 4 hours, and each way the trip was 200 miles. What was the speed of the wind that affected the plane, which was flying at a speed of 120mph? Round your answer to the nearest whole number.
You wish to buy a motor that will be used to lift a 10-kg bundle of shingles from the ground to the roof of a house. The shingles are to have a 1.5-m/s2 upward acceleration at the start of the lift. The very light pulley on the motor has a radius of 0.17 m . Part A Determine the minimum torque that the motor must be able to provide. Express your answer with
Part 1) A cop car traveling at 25 m/s has a siren producing a frequency of 700 Hz. A felon jumps on his motorcycle and speed off in the opposite direction of 15 m/s. What frequency does the felon hear as he sped away (speed of sound is 343 m/s)?Part 2) The cop does a U-turn and speeds towards the felon at 30 m/s, while the felon speeds up to 20 m/s. What frequency does the felon hear as he sped away (speed of sound is 343 m/s)?Part 3) What if the felon then sped up to 30 m/s and all other conditions remained the same?

Two particles are traveling through space. At time t the first particle is at the point (−1 + t, 4 − t, −1 + 2t) and the second particle is at (−7 + 2t, −6 + 2t, −1 + t). (a) (5 Points) Do the paths of the two particles cross? If so, where?

Answers

Answer:

Yes, the paths of the two particles cross.

Location of path intersection = ( 1 , 2 , 3)

Explanation:

In order to find the point of intersection, we need to set both locations equal to one another. It should be noted however, that the time for each particle can vary as we are finding the point where the paths meet, not the point where the particles meet themselves.

So, we can name the time of the first particle T_F ,  and the time of the second particle T_S.

Setting the locations equal, we get the following equations to solve for T_F and T_S:

(-1 + T_F) = (-7 + 2T_S)                     Equation 1

(4 - T_F) = (-6 + 2T_S)                        Equation 2

(-1 + 2T_F) = (-1 + T_S)                     Equation 3

Solving these three equations simultaneously we get:

T_F = 2 seconds

T_S = 4 seconds

Since, we have an answer for when the trajectories cross, we know for a fact that they indeed do cross.

The point of crossing can be found by using the value of T_For T_Sin the location matrices. Doing this for the first particle we get:

Location of path intersection = ( -1 + 2 , 4 - 2 , -1 + 2(2) )

Location of path intersection = ( 1 , 2 , 3)

A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound produced by the pipe, in SI units, is closest to:

Answers

Answer:

f3 = 102 Hz

Explanation:

To find the frequency of the sound produced by the pipe you use the following formula:

f_n=(nv_s)/(4L)

n: number of the harmonic = 3

vs: speed of sound = 340 m/s

L: length of the pipe = 2.5 m

You replace the values of n, L and vs in order to calculate the frequency:

f_(3)=((3)(340m/s))/(4(2.5m))=102\ Hz

hence, the frequency of the third overtone is 102 Hz

What occurs when a light wave enters a substance and its speed suddenly slowsdown?
refraction
Olightening
Oreflection
the vacuum effect

Answers

Final answer:

Refraction occurs when a light wave enters a substance and its speed suddenly slows down.


Explanation:

When a light wave enters a substance and its speed suddenly slows down, it undergoes a phenomenon known as refraction. Refraction occurs due to the change in speed and direction of light as it passes from one medium to another with a different refractive index. The change in speed causes the light wave to bend, resulting in a change in its path.


Learn more about Refraction here:

brainly.com/question/32684646


A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s2. How far will the car travel in 12 seconds?

Answers

Same formula as the last question. x = vt + (1/2)at^2. In this case, v = 0, t = 12, and a = 2.0. Plug in the values and solve for x (which is change in position)x = (0)(12) + (1/2)(2.0)(12^2)x = (1/2)(2.0)(144)x = (1)(144)x = 144So the car will travel 144 meters in 12 seconds.

Final answer:

The car, accelerating at a constant rate of 2.0 m/s2 from rest, will travel a distance of 144 meters in 12 seconds.

Explanation:

The question pertains to the concept of motion in physics, specifically how distances travelled are influenced by an object's acceleration. The car is accelerating at a constant rate of 2.0 m/s2 from rest. It means that the initial velocity of the car is 0. We can use the formula of motion, s = ut + 0.5at2, where u is the initial velocity, a is the acceleration and t is the time.

In this case, u = 0 (as the car starts from rest), a = 2.0 m/s2 (constant acceleration) and t = 12 seconds. Substituting these values into the formula, we get:

s = 0*12 + 0.5*2*122

Therefore, the car will travel 144 meters in 12 seconds assuming it accelerates at a constant rate.

Learn more about Constant Acceleration here:

brainly.com/question/37024881

#SPJ2

What displacement do I have if I travel at 10 m/s E for 10 s? A. 1 m E B. 1 m C. 100 m D. 100 m E Scalar quantities include what 2 things? A. Number and direction B. Numbers and units C. Units and directions D. Size and direction What measures distance in a car? A. Odometer B. Pressure gauge C. Speedometer D. Steering wheel What displacement do I have if I travel 10 m E, then 6 m W, then 12 m E? A. 28 m E B. 16 m E C. 16 m D. 28 m

Answers

Hope this will help you

Final answer:

The displacement is 100 m to the east.

Explanation:

The displacement can be calculated using the formula:

Displacement = Velocity × Time

In this case, the velocity is 10 m/s to the east and the time is 10 seconds.

So, Displacement = 10 m/s × 10 s = 100 m to the east.

Learn more about Displacement here:

brainly.com/question/33459975

A 13.0-Ω resistor, 13.5-mH inductor, and 50.0-µF capacitor are connected in series to a 55.0-V (rms) source having variable frequency. If the operating frequency is twice the resonance frequency, find the energy delivered to the circuit during one period.

Answers

Answer:

E = 0.13 J

Explanation:

At resonance condition we have

\omega = \sqrt{(1)/(LC)}

\omega = \sqrt{(1)/((13.5 * 10^(-3)){50* 10^(-6))}}

\omega = 1217.2 rad/s

now if the frequency is double that of resonance condition then we have

x_L = 2\omega L

x_L = 2(1217.2)(13.5* 10^(-3))

x_L = 32.86 ohm

now we have

x_c = (1)/(2(1217)(50* 10^(-6)))

x_c = 8.22 ohm

now average power is given as

P = i_(rms)V_(rms)* (R)/(z)

P = (55)/(√((32.86 - 8.22)^2 + 13^2)))(55)* (13)/(√((32.86 - 8.22)^2 + 13^2))

P_(avg) = 50.67 Watt

Now time period is given as

T = (2\pi)/(\omega)

so total energy consumed is given as

E_(avg) = 50.67((2\pi)/(2(1217.2)))

E = 0.13 J