Answer: Length axis f= 114.3 Hz, Width axis f=228.67 Hz
Explanation:
We are given that,
Length of tub= 1.5 m
Width of tub= 0.75 m
Sound speed= 343 m/s
Now, we are also given shower is closed.
So, frequency is given as:
f=
For length axis
Put v= 343 m/s, m=1 and L=1.5 m
f= 1 *
f= 114.3 Hz
For next resonant frequency, m=2
f= 2*
f= 228.67
For width axis
Put v= 343 m/s, m=1 and L= 0.75 m
f= 1*
f= 228.67 Hz
For next frequency, m=2
f= 2*
f= 457.34 Hz
Answer:
69.69 g
Explanation:
Evaporation of water will take out latent heat of vaporization. Let the mass of water be m and latent heat of vaporization of water be 2260000 J per kg
Heat taken up by evaporating water
= 2260000 x m J
Heat lost by body
= mass x specific heat of body x drop in temperature
60 x 3500 x .750 ( specific heat of human body is 3.5 kJ/kg.k)
= 157500 J
Heat loss = heat gain
2260000 m= 157500
m = .06969 kg
= 69.69 g
Approximately 78 grams of water would need to evaporate from a 60.0-kg person to lower their body temperature by 0.750ºC. This calculation is based on the principles of thermodynamic heat transfer and the specific body temperature, latent heat of water vaporization, and specific heat capacity of the human body.
To calculate the amount of water mass from an individual's body that would need to evaporate to reduce their body temperature, we can use the principle of thermodynamic heat transfer. The basic equation is Q = mLv, where Q is the heat absorbed or lost, m is the mass, and Lv is the latent heat of vaporization.
In this case, knowing that at body temperature of 37.0°C, the latent heat of water vaporization (Lv) is approximately 2430 kJ/kg, we substitute these numbers. Given our desire to reduce body temperature by 0.750°C in a 60 kg human, we first calculate the amount of heat to dissipate (Q) using Q = mcΔT, where c is the specific heat capacity of the human body (roughly equivalent to that of water, 4.184 kJ/kg°C), m is the mass, and ΔT is the change in temperature.
The calculation is as follows:
Q = (60 kg)(4.184 kJ/kg°C)(0.750°C) = ~189 kJ
Next, we substitute Q into the Q = mLv equation to determine the mass m:
m = Q / Lv = 189 kJ / 2430 kJ/kg = 0.078 kg, or 78 grams
Hence, around 78 grams of water would need to evaporate from a 60.0-kg person to lower their body temperature by 0.750ºC.
#SPJ6
When two bodies come into close touch with one another, a collision occurs. In this instance, the two bodies quickly exert forces on one another. The collision changes the energy and momentum of the bodies that are interacting.
Briefing
the system's initial kinetic energy, KEi, is equal to 0.5 * 4 * 1.8 2 plus 0.5 * 6 * 0.2 2 J.
KEi = 6.6 J
The system's ultimate kinetic energy, KEf
, following the collision is equal to 0.5 * 4 * 0.6 + 0.5 * 6 * 1.4 J.
KEf = 6.6 J
since KEi = KEf
Perfectly elastic is the collision
the appropriate response is A) completely elastic.
Visit: to learn more about absolutely elastic.
#SPJ4
Answer:
Glycolysis
Explanation:
In human body, glucose levels are regulated by hormones insulin and glucagon, secreted from pancreas. Glucagon from alpha cells and insulin from beta cells of the pancreas. Glucagon are regulated along depending upon the blood sugar levels. During fasting when blood sugar levels are decreased the glucagon levels are increased. Glucagon increases hepatic glucose through glycogenelysis.
So, Glycolysis of glucagon is least likely to be activated by glucagon in hepatocytes
Answer:
option the correct is B
Explanation:
Let's analyze the different options, for a closed system
- an internal reaction changes the system, but does not affect the surrounding environment
- Heat, is a means of transfer that occurs when two bodies are in contact, one of the body can be a closed system since the only thing that happens is thermal transfer, without movement of the system itself. This is the correct result.
- Work implies a movement whereby the system must be mobile, it is not an option
- Pressure change. change in the system, but does not affect the environment
- Mass transfer is not possible in a closed system
After analyzing each option the correct one in B
The rate of change of angulardisplacement is defined as angular velocity. The angular velocity will be 22.41rad/s.
The rate of change of angular displacement is defined as angular velocity. Its unit is rad/sec.
ω = θ t
Where,
θ is the angle of rotation,
tis the time
ω is the angular velocity
The given data in the problem is;
u is the initialvelocity=0
α is the angularacceleration = 4.0 rad/s²
t is the time period=
n is the number of revolution = 10 rev
From Newton's second equation of motion in terms of angular velocity;
Hence the angular velocity will be 22.41 rad/s.
To learn more about angularvelocity refer to the link
Answer:
= 22.41rad/s
Explanation:
First, we know that:
a = 4 rad/s^2
S = 10 rev = 62.83 rad
Now we know that:
where is the final angular velocity, the initial angular velocity, a is the angular aceleration and S the radians.
Replacing, we get:
Finally, solving for :
= 22.41rad/s