Answer:
(a) t=3.87 s :time at which Kathy overtakes Stan
(b) d=37.36 m
(c) vf₁ = 15.097 m/s : Stan's final speed
vf₂ = 19.31 m/s : Kathy's final speed
Explanation:
kinematic analysis
Because Kathy and Stan move with uniformly accelerated movement we apply the following formulas:
vf= v₀+at Formula (1)
vf²=v₀²+2*a*d Formula (2)
d= v₀t+ (1/2)*a*t² Formula (3)
Where:
d:displacement in meters (m)
t : time in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Nomenclature
d₁: Stan displacement
t₁ : Stan time
v₀₁: Stan initial speed
vf₁: Stan final speed
a₁: Stan acceleration
d₂: car displacement
t₂ : Kathy time
v₀₂: Kathy initial speed
vf₂: Kathy final speed
a₂: Kathy acceleration
Data
v₀₁ = 0
v₀₂ = 0
a₁ = 3.1 m/s²
a₂= 4.99 m/s²
t₁ = (t₂ +1) s
Problem development
By the time Kathy overtakes Stan, the two will have traveled the same distance:
d₁ = d₂
t₁ = (t₂ +1)
We aplpy the Formula (3)
d₁ = v₀₁t₁ + (1/2)*a₁*t₁²
d₁ = 0 + (1/2)*(3.1)*t₁²
d₁ = 1.55*t₁² ; Stan's cinematic equation 1
d₂ = v₀₂t₂ + (1/2)*a₂*t₂²
d₂ = 0 + (1/2)*(4.99)*t₂²
d₂ = 2.495* t₂² : Kathy's cinematic equation 2
d₁ = d₂
equation 1=equation 2
1.55*t₁² = 2.495* t₂² , We replace t₁ = (t₂ +1)
1.55* (t₂ +1) ² =2.495* t₂²
1.55* (t₂² +2t₂+1) =2.495* t₂²
1.55*t₂²+1.55*2t₂+1.55 = 2.495* t₂²
1.55t₂²+3.1t₂+1.55=2.495t₂²
(2.495-1.55)t₂² - 3.1t₂ - 1.55 = 0
0.905t₂² - 3.1t₂ - 1.55 = 0 Quadratic equation
Solving the quadratic equation we have:
(a) t₂ = 3.87 s : time at which Kathy overtakes Stan
(b) Distance in which Kathy catches Stan
we replace t₂ = 3.87 s in equation 2
d₂ = 2.495*( 3.87)²
d₂ = 37.36 m
(c) Speeds of both cars at the instant Kathy overtakes Stan
We apply the Formula (1)
vf₁= v₀₁+a₁t₁ t₁ =( t₂+1 ) s=( 3.87 + 1 ) s = 4.87 s
vf₁= 0+3.1* 4.87
vf₁ = 15.097 m/s : Stan's final speed
vf₂ = v₀₂+a₂ t₂
vf₂ =0+4.99* 3.87
vf₂ = 19.31m/s : Kathy's final speed
Complete Question
The complete question is shown on the first uploaded image
Answer:
The answer is
% higher than
% lower than
Explanation:
From the question we are told that
The first string has a frequency of
The period of the beat is
Generally the frequency of the beat is
Substituting values
From the question
for having a higher tension
So
From the question
Substituting values
% higher than
For having a lower tension
So
From the question
Substituting values
% lower than
Answer:
The answer is below
Explanation:
The speed of the boat in still water is perpendicular to the speed of the water flow. Therefore the speed relative to the ground (V), the speed of flow and the speed of the boat in still water form a right angled triangle. Hence the speed relative to the ground is given as:
V² = 56² + 126²
V² = 19012
V = 137.9 m/s
Answer:
The electric flux remains unchanged
Explanation:
From Gauss law the Electric flux is directly proportional to the number of electric field lines passing through a surface. The number of field lines passing through a surface become if the radius is doubled becomes 1/4th that is when radius of the Gaussian surface is doubled, but at the same time, the surface area has increased 4 times , so the electric flux remains unchanged
C. 97 dB
D. 223 dB
E. 179 dB
Answer:
(c) 97 dB sound intensity level
Explanation:
We have given the intensity of the loud car horn
We know that
Now the sound intensity level is given by , which is nearly equal to 97
So the sound intensity level will be 97 dB
So option (c) will be the correct option
Answer:
0.83x10^-9 T
Direction is towards +z axis.
Explanation:
E = cB
E = magnitude of electrical 0.25 Em
c = speed of light in a vacuum 3x10^8 m/s
Therefore,
B = E/c = 0.25 ÷ 3x10^8
B = 0.83x10^-9 T
Magnetic fueld of a EM wave acts perpendicularly to its electric field, therefore it's direction is towards the +Z axis
Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:
n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:
hence, the frequency of the third overtone is 102 Hz