Isopropyl methyl ether is slightly soluble in water because the oxygen atom of ethers with 3 or lesser carbon atoms can form hydrogen bonds with water. Therefore, the given statement is true.
Hydrogen bonding is a special class of attractive intermolecular forces that arise because of the dipole-dipole interaction between hydrogen that is bonded to a highly electronegative atom and another highly electronegative atom that lies in the neighborhood of the hydrogen atom.
For example, in water, hydrogen is covalently bonded to the oxygen atom. Therefore, hydrogen bonding arises because of the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another water molecule.
The solubility of ether in water depends upon the extent of the formation of hydrogen bonds with water. Ether which contains three carbon atoms is soluble in water due to these lower hydrocarbon atoms can form hydrogen bonding with water.
But the solubility of hydrocarbons or ethers decreases as increase the number of carbon atoms. This is because higher ethers or ethers with more carbons have more hydrophobic parts. Therefore they cannot be soluble in water as they cannot form hydrogen bonds with water molecules.
Learn more about hydrogen bonding, here:
#SPJ2
Answer:
True
Hydrogen bond is a partial intermolecular bonding interaction between a lone pair on an electron rich donor atom, particularly the second-row elements nitrogen (N), oxygen (O), or fluorine (F), and the antibonding orbital of a bond between hydrogen (H) and a more
electronegative atom or group. Such an interacting system is generally denoted Dn–H···Ac, where the solid line denotes a polar covalent bond, and the dotted or dashed line indicates the hydrogen bond. The use of three centered dots for the hydrogen bond is specifically recommended by the IUPAC. While hydrogen bonding has both covalence and electrostatic contributions, and the degrees to which they contribute are currently debated, the present evidence strongly implies that the primary contribution is covelant.
Hydrogen bonds can be intermolecular (occurring between separate molecules) or
intramolecular (occurring among parts of the same molecule)
Answer:
4
Explanation:
Light refracts when it passes through something transparent at an angle so that eliminates the other 3.
or put differently
Light refracts whenever it travels at an angle into a substance with a different refractive index (optical density)
Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles = = 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺
How many bonding electrons are present in this compound?
How many lone pair (non-bonding) electrons are present in this compound?
Answer:
Valence electrons in XeCl2 = 8 + 7 + 7 = 22.
Bonding electrons = 4.
Nonbonding electrons = 18.
Explanation:
Hello.
In this case, you can see the Lewis structure on the attached picture, in which you can see that there are since xenon has 8 valance electrons and each chlorine has 7 valence electrons, the total amount of valence electrons is:
Valence electrons in XeCl2 = 8 + 7 + 7 = 22.
Moreover, since each chlorine atom is bonding with one of the eight electrons of xenon (Lewis structure), we can see there are 4 bonding electrons.
Finally, since there are six nonbonding electrons per chlorine atom and six nonbonding electrons in xenon, the overall nonbonding electrons are:
Nonbonding electrons in XeCl2 = 6 + 6 + 6 = 18.
Regards.
b. Some of the vapor initially present will condense.
c. The pressure in the container will be 100. mm Hg.
d. Only octane vapor will be present.
e. Liquid octane will be present.
Answer:
the final pressure (108.03 mmHg ) inside the container at 339 K is more than the vapor pressure of liquid octane (100 mmHg) at 339 K.
Hence,
b. Some of the vapor initially present will condense.
e. Liquid octane will be present.
Explanation:
Given that;
The vapor pressure of liquid octane, C8H18, is 100 mm Hg at 339 K
Initial volume of the container, V1 = 537 mL
Initial vapor pressure, P1 = 68.0 mmHg
Final volume of the container, V2 = 338 mL
Let us say that the final vapor pressure = P2
From Boyle's law,
P2V2 = P1V1
P2 * 338 = 68.0 * 537
338P2 = 36516
P2 = 36516 / 338
P2 = 108.03 mmHg
Thus, the final pressure (108.03 mmHg ) inside the container at 339 K is more than the vapor pressure of liquid octane (100 mmHg) at 339 K.
Hence,
b. Some of the vapor initially present will condense.
e. Liquid octane will be present.
Answer:
2.6 sec
Explanation:
The distance between the Earth and the moon = 240,000 miles
Also,
1 mile = 1609.34 m
So,
Distance between the Earth and the moon = 240,000 × 1609.34 m = 386241600 m
Speed of the light = 3 × 10⁸ m/s
Distance = Speed × Time.
So,
Time = Distance / Speed = 386241600 m / 3 × 10⁸ m/s = 1.3 sec
For back journey = 1.3 sec
So, total time = 2.6 sec
Here's the answer, I remember doing this problem last year.
23.5 degrees north, 77 degrees west