The ratio of the electric force on the proton after the wire segment is shrunk to three times its original length to the force before the segment was shrunk is 3.
The electric force between a point charge and a segment of wire with a distributed charge is given by Coulomb's law.
The formula for the electric force on a point charge q due to a segment of wire with charge Q distributed along its length L is:
where:
F is the electric force on the point charge,
k is Coulomb's constant ( 8.988 × 1 0⁹ Nm²/ C²),
q is the charge of the point charge,
Q is the charge distributed along the wire segment, and
L is the length of the wire segment.
When the wire segment is shrunk to one-third of its original length, the new length becomes 1/3 L.
The chargedistribution remains the same, only the length changes.
So, the new electric force on the proton after the segment is shrunk becomes:
The original electric force on the proton before the segment was shrunk is:
let's find the ratio :
Hence, the ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk is 3.
To learn more on Electric force click here:
#SPJ12
The ratio of the electric force on the proton after the wire segment is shrunk is equal to the ratio of their charges.
The ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk can be found using Coulomb's law. Coulomb's law states that the electric force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the charges involved are the charge of the wire segment and the charge of the proton. Since the wire segment contains 10 nC of charge, we can consider it as one of the charged objects. The proton is very far from the wire, so we can assume that the distance between them remains the same before and after the wire segment is shrunk. Therefore, the ratio of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk is equal to the ratio of their charges.
Let's assume that the initial force on the proton is Fi and the final force on the proton is Ff. Using the given information, we have:
Fi = k(q1 * q2) / r^2
where k is the electrostatic constant, q1 and q2 are the charges of the wire segment and the proton respectively, and r is the distance between them.
After the wire segment is shrunk to one-third of its original length, the charge of the wire segment remains the same and the distance between the wire segment and the proton also remains the same. Therefore, the ratio Ff/Fi can be calculated as:
Ff/Fi = (q1 * q2) / (q1 * q2) = 1
initial angular speed is given by 33.3 rpm
final angular speed is given by 78 rpm
now by using kinematics we will have
Answer:
elative magnitude of the two forces is the same and they are applied in a constant direction.
Explanation:
Newton's second law states that the sum of the forces is equal to the mass times the acceleration
∑ F = m a
in this case there are two forces on the x axis
F_applied - fr = 0
since they indicate that the velocity is constant, consequently
F_applied = fr
the relative magnitude of the two forces is the same and they are applied in a constant direction.
Answer:
The voltage will be 0.0125V
Explanation:
See the picture attached
Bioelectrical impedance
Skinfold testing
Hydrostatic weighing
Answer: Skinfold testing
Explanation:
Skinfold testing, is also referred to as calliper testing and it's used to know the body fat percentage. Skinfold testing is an inexpensive, portable, and common way to assess body fat in the fitness industry.
It is typically done with the use of caliper tapes, marker pens which makes it cheap. Skinfold testing isn't usually accurate which is as a result of human errors.
Answer:
speed when it reaches y = 4.00cm is
v = 14.9 g.m/s
Explanation:
given
q₁=q₂ =2.00 ×10⁻⁶
distance along x = 3.00cm= 3×10⁻²
q₃= 4×10⁻⁶C
mass= 10×10 ⁻³g
distance along y = 4×10⁻²m
r₁ = = = 3.61cm = 0.036m
r₂ = = = 5cm = 0.05m
electric potential V =
change in potential ΔV =
ΔV = , where 2.00μC
ΔV =
ΔV = 2 × 9×10⁹ × 2×10⁻⁶ ×
ΔV= 2.789×10⁵
= ΔV × q₃
ˣ 10×10⁻³ ×v² = 2.789×10⁵× 4 ×10⁻⁶
v² = 223.12 g.m/s
v = 14.9 g.m/s
The speed of the charge q₃ when it starts from rest at y = 2 cm and reaches y = 4 cm is; v = 14.89 m/s
We are given;
Charge 1; q₁ = 2.00 μC = 2 × 10⁻⁶ C
Charge 2; q₂ = 2.00 μC = 2 × 10⁻⁶ C
Distance of charge 1 along x = 3 cm = 3 × 10⁻² m
Distance of charge 2 along x = -3 cm = -3 × 10⁻² m
Charge 3; q₃ = +4.00 μC = 4 × 10⁻⁶ C
mass; m = 0.01 g
distance of charge 3 along y = 4 cm = 4 × 10⁻² m
q₃ starts from rest at y = 2 × 10⁻² m and reaches y = 4 × 10⁻² m.
Thus;
Distance of charge 1 from the initial position of q₃;
r₁ = √((3 × 10⁻²)² + ((2 × 10⁻²)²)
r₁ = 0.0361 m
Distance of charge 2 from the final position of q₃;
r₂ = √((3 × 10⁻²)² + ((4 × 10⁻²)²)
r₂ = 0.05 m
Now, formula for electric potential is;
V = kq/r
Where k = 9 × 10⁹ N.m²/s²
Thus,change in potential is;
ΔV = V₁ - V₂
Now, Net V₁ = 2kq₁/r₁
Net V₂ = 2kq₂/r₂
Thus;
ΔV = 2kq₁/r₁ - 2kq₂/r₂
ΔV = (2 × 9 × 10⁹)[(2 × 10⁻⁶/0.0361) - (2 × 10⁻⁶/0.05)]
ΔV = 277229.92 V
Now, from conservation of energy;
½mv² = q₃ΔV
Thus;
½ × 0.01 × v² = 4 × 10⁻⁶ × 277229.92
v² = 2 × 4 × 10⁻⁶ × 277229.92/0.01
v = √(221.783936)
v = 14.89 m/s
Read more about point charges at;brainly.com/question/13914561
Answer:
Initial velocity of ball 2 = 38.21 m/s = 125.36 ft/s
At the time of collision velocity of ball one is descending.
Explanation:
Velocity of ball 1 = 146 ft/sec = 44.50m/s
The balls are to collide at an altitude of 234 ft
H = 234 ft = 71.32 m
We have equation of motion
v² = u² + 2as
v² = 44.50² + 2 x (-9.81) x 71.32
v = ±24.10 m/s.
Time for each velocity can be calculated using equation of motion
v = u + at
24.10 = 44.50 - 9.81 t , t = 2.07 s
-24.10 = 44.50 - 9.81 t , t = 6.99 s
Since the second ball throws after 2.3 seconds we can avoid case with t = 2.07 s.
So at the time of collision velocity of ball one is descending.
The collision occurs at t = 6.99 s.
Time of flight of ball 2 = 6.99 - 2.3 = 4.69 seconds.
Height traveled by ball 2 = 71.32 m
We need to find velocity
We have
s = ut + 0.5 at²
71.32 = u x 4.69 - 0.5 x 9.81 x 4.69²
u = 38.21 m/s = 125.36 ft/s
Initial velocity of ball 2 = 38.21 m/s = 125.36 ft/s
Answer:
v2=139 ft
Explanation:
First we just look at the motion of the first particle. It is moving vertically in a gravitational field so is decelerating with rate g = 9.81 m/s^2 = 32.18 ft/s^2. We can write it's vertical position as a function of time.
h_1=v_1*t-(a*t/2)
We set this equal to 234 ft to find when the body is passing that point, a solve the quadratic equation for t.
t_1,2=v_1±(√v_1^2-4*a/2*h_1)/a=2.57 s, 7.44 s
Since we know the second ball was launched after 2.3 seconds, we know that the time we are looking for is the second one, when the first ball is descending. The second ball will have 2.3 seconds less so the time we further use is t_c = 7.44 - 2.3 = 5.14 s. With this the speed of the second ball needed for collision at given height, can be found.
Solving a similar equation, but this time for v2 to obtain the result.
h_2=234 ft=v2*t_c-(a*t_c^2/2)--->v2=139 ft