A small segment of wire contains 10 nC of charge. The segment is shrunk to one-third of its original length. A proton is very far from the wire. What is the ratio Ff/Fi of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk?

Answers

Answer 1
Answer:

The ratio of the electric force on the proton after the wire segment is shrunk to three times its original length to the force before the segment was shrunk is 3.

The electric force between a point charge and a segment of wire with a distributed charge is given by Coulomb's law.

The formula for the electric force on a point charge q due to a segment of wire with charge Q distributed along its length L is:

F=(k.q.Q)/(L)

where:

F is the electric force on the point charge,  

k is Coulomb's constant ( 8.988 × 1 0⁹ Nm²/ C²),

q is the charge of the point charge,  

Q is the charge distributed along the wire segment, and

L is the length of the wire segment.

When the wire segment is shrunk to one-third of its original length, the new length becomes 1/3 L.

The chargedistribution remains the same, only the length changes.

So, the new electric force F_f ​ on the proton after the segment is shrunk becomes:

F_f=(k.q.Q)/((1)/(3)L)

The original electric force F_i​ on the proton before the segment was shrunk is:

F_i = (k.q.Q)/(L)

let's find the ratio(F_f)/(F_i) ​:

(F_f)/(F_i)=((k.q.Q)/((1)/(3)L))/((k.q.Q)/(L))

(F_f)/(F_i)=3

Hence,  the ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk is 3.

To learn more on Electric force click here:

brainly.com/question/31696602

#SPJ12

Answer 2
Answer:

Final answer:

The ratio of the electric force on the proton after the wire segment is shrunk is equal to the ratio of their charges.

Explanation:

The ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk can be found using Coulomb's law. Coulomb's law states that the electric force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

In this case, the charges involved are the charge of the wire segment and the charge of the proton. Since the wire segment contains 10 nC of charge, we can consider it as one of the charged objects. The proton is very far from the wire, so we can assume that the distance between them remains the same before and after the wire segment is shrunk. Therefore, the ratio of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk is equal to the ratio of their charges.

Let's assume that the initial force on the proton is Fi and the final force on the proton is Ff. Using the given information, we have:

Fi = k(q1 * q2) / r^2

where k is the electrostatic constant, q1 and q2 are the charges of the wire segment and the proton respectively, and r is the distance between them.

After the wire segment is shrunk to one-third of its original length, the charge of the wire segment remains the same and the distance between the wire segment and the proton also remains the same. Therefore, the ratio Ff/Fi can be calculated as:

Ff/Fi = (q1 * q2) / (q1 * q2) = 1


Related Questions

A 0.26 kg rock is thrown vertically upward from the top of a cliff that is 32 m high. When it hits the ground at the base of the cliff, the rock has a speed of 29 m/s. Assuming that air resistance can be ignore and using conservation of mechanical energy, find (a) the initial speed of the rock and (b) the greatest height of the rock as measured from the base of the cliff.
Using an argument based on the general form of the Schrödinger equation, explain why if \psi (x) is a solution to the Schrödinger equation, then A\psi(x) must also be a solution if A is a constant.​I saw an explanation for this from another posted question, but this person put the explanation in numerical/equation form. Is there any way someone can explain the answer to this question in words (NON numerical/equation form)?
As you take the stoppered part of the tube up the staircase you begin to see the water level drop around the 4th floor. As you continue up it does not continue up with you but stays at a constant level. What does that mean?a. The pressure in the tubing is equal to the barometric pressure.b. The tubing was unable to supply any more water to the tube for use.c. The pressure outside the tube is higher that the water pressure inside the tube.
A moon is in orbit around a planet. The​ moon's orbit has a semimajor axis of 4.3 times 10 Superscript 8 Baseline m and has an orbital period of 1.516 days. Use these data to estimate the mass of the planet.
High-energy particles are observed in laboratories by photographing the tracks they leave in certain detectors; the length of the track depends on the speed of the particle and its lifetime. A particle moving at 0.993c leaves a track 1.15 mm long. What is the proper lifetime of the particle

How long does it take a wheel that is rotating at 33.3 rpm to speed up to 78.0 rpm if it has an angular acceleration of 2.15 rad/ s 2?

Answers

initial angular speed is given by 33.3 rpm

w_0 = 2\pi (33.3)/(60)

w_0 = 3.49 rad/s

final angular speed is given by 78 rpm

w_f = 2\pi (78)/(60)

w_f = 8.17 rad/s

now by using kinematics we will have

w_f = w_0 + \alpha * t

8.17 = 3.49 + 2.15 * t

t = 2.17 seconds

. Set the applied force to Force necessary to Keep the box Moving without accelerating. Restart the animation. Just before the box hits the wall, stop the animation. What can you tell me about relative magnitudes of the frictional force and the applied force

Answers

Answer:

elative magnitude of the two forces is the same and they are applied in a constant direction.

Explanation:

Newton's second law states that the sum of the forces is equal to the mass times the acceleration  

              ∑ F = m a

in this case there are two forces on the x axis

             F_applied - fr = 0

since they indicate that the velocity is constant, consequently

             F_applied = fr

the relative magnitude of the two forces is the same and they are applied in a constant direction.

A parallel-plate capacitor is constructed from two aluminum foils of 1 square centimeter area each placedon both sides of a rubber square of the same size. The rubber dielectric is 2.5 mm thick, hasr2.5, andbreakdown field strength of 25 megavolts per meter. Find the voltage rating of the capacitor using a safetyfactor of 10.

Answers

Answer:

The voltage will be 0.0125V

Explanation:

See the picture attached

What is an inexpensive, portable, and common way to assess body fat in the fitness industry?DEXA
Bioelectrical impedance
Skinfold testing
Hydrostatic weighing

Answers

Answer: Skinfold testing

Explanation:

Skinfold testing, is also referred to as calliper testing and it's used to know the body fat percentage. Skinfold testing is an inexpensive, portable, and common way to assess body fat in the fitness industry.

It is typically done with the use of caliper tapes, marker pens which makes it cheap. Skinfold testing isn't usually accurate which is as a result of human errors.

1. Two charges Q1( + 2.00 μC) and Q2( + 2.00 μC) are placed along the x-axis at x = 3.00 cm and x=-3 cm. Consider a charge Q3 of charge +4.00 μC and mass 10.0 mg moving along the y-axis. If Q3 starts from rest at y = 2.00 cm, what is its speed when it reaches y = 4.00 cm?

Answers

Answer:

speed when it reaches y = 4.00cm is

v = 14.9 g.m/s

Explanation:

given

q₁=q₂ =2.00 ×10⁻⁶

distance along x = 3.00cm= 3×10⁻²

q₃= 4×10⁻⁶C

mass= 10×10 ⁻³g

distance along y = 4×10⁻²m

r₁ = \sqrt{3^(2) +2^(2)  } = √(13) = 3.61cm = 0.036m

r₂ = \sqrt{4^(2) + 3^(2)  } = √(25) = 5cm = 0.05m

electric potential V = (kq)/(r)

change in potential ΔV = V_(1) - V_(2)

ΔV = (2kq_(1) )/(r_(1)) - (2kq_(2) )/(r_(2) ) , where q_(1) = q_(2)=2.00μC

ΔV = 2kq((1)/(r_(1)) - (1)/(r_(2) ))

ΔV = 2 × 9×10⁹ × 2×10⁻⁶ × ((1)/(0.036) - (1)/(0.05) )

ΔV= 2.789×10⁵

(1)/(2)mv^(2) = ΔV × q₃

(1)/(2) ˣ 10×10⁻³ ×v² = 2.789×10⁵× 4 ×10⁻⁶

v² = 223.12 g.m/s

v = 14.9 g.m/s

The speed of the charge q₃ when it starts from rest at y = 2 cm and reaches y = 4 cm is; v = 14.89 m/s

We are given;

Charge 1; q₁ = 2.00 μC = 2 × 10⁻⁶ C

Charge 2; q₂ = 2.00 μC = 2 × 10⁻⁶ C

Distance of charge 1 along x = 3 cm = 3 × 10⁻² m

Distance of charge 2 along x = -3 cm = -3 × 10⁻² m

Charge 3; q₃ = +4.00 μC  = 4 × 10⁻⁶ C

mass; m = 0.01 g

distance of charge 3 along y = 4 cm = 4 × 10⁻² m

q₃ starts from rest at y = 2 × 10⁻² m and reaches y = 4 × 10⁻² m.

Thus;

Distance of charge 1 from the initial position of q₃;

r₁ = √((3 × 10⁻²)² + ((2 × 10⁻²)²)

r₁ = 0.0361 m

Distance of charge 2 from the final position of q₃;

r₂ = √((3 × 10⁻²)² + ((4 × 10⁻²)²)

r₂ = 0.05 m

Now, formula for electric potential is;

V = kq/r

Where k = 9 × 10⁹ N.m²/s²

Thus,change in potential is;

ΔV = V₁ - V₂

Now, Net V₁ = 2kq₁/r₁

Net V₂ = 2kq₂/r₂

Thus;

ΔV = 2kq₁/r₁ - 2kq₂/r₂

ΔV = (2 × 9 × 10⁹)[(2 × 10⁻⁶/0.0361) - (2 × 10⁻⁶/0.05)]

ΔV = 277229.92 V

Now, from conservation of energy;

½mv² = q₃ΔV

Thus;

½ × 0.01 × v² = 4 × 10⁻⁶ × 277229.92

v² = 2 × 4 × 10⁻⁶ × 277229.92/0.01

v = √(221.783936)

v = 14.89 m/s

Read more about point charges at;brainly.com/question/13914561

Ball 1 is launched with an initial vertical velocity v1 = 146 ft/sec. Ball 2 is launched 2.3 seconds later with an initial vertical velocity v2. Determine v2 if the balls are to collide at an altitude of 234 ft. At the instant of collision, is ball 1 ascending or descending?

Answers

Answer:

Initial velocity of ball 2 = 38.21 m/s = 125.36 ft/s    

At the time of collision velocity of ball one is descending.

Explanation:

Velocity of ball 1 = 146 ft/sec = 44.50m/s

The balls are to collide at an altitude of 234 ft

H = 234 ft = 71.32 m

We have equation of motion

         v² = u² + 2as

         v² = 44.50² + 2 x (-9.81) x 71.32

         v = ±24.10 m/s.

Time for each velocity can be calculated using equation of motion

        v = u + at

         24.10 = 44.50 - 9.81 t , t = 2.07 s

         -24.10 = 44.50 - 9.81 t , t = 6.99 s      

Since the second ball throws after 2.3 seconds  we can avoid case with t = 2.07 s.

So at the time of collision velocity of ball one is descending.

The collision occurs at t = 6.99 s.

Time of flight of ball 2 = 6.99 - 2.3 = 4.69 seconds.

Height traveled by ball 2 = 71.32 m

We need to find velocity

We have

           s = ut + 0.5 at²

           71.32 = u x 4.69 - 0.5 x 9.81 x 4.69²

           u = 38.21 m/s = 125.36 ft/s

Initial velocity of ball 2 = 38.21 m/s = 125.36 ft/s    

Answer:

v2=139 ft

Explanation:

First we just look at the motion of the first particle. It is moving vertically in a gravitational field so is decelerating with rate g = 9.81 m/s^2 = 32.18 ft/s^2. We can write it's vertical position as a function of time.  

h_1=v_1*t-(a*t/2)

We set this equal to 234 ft to find when the body is passing that point, a solve the quadratic equation for t.  

t_1,2=v_1±(√v_1^2-4*a/2*h_1)/a=2.57 s, 7.44 s

Since we know the second ball was launched after 2.3 seconds, we know that the time we are looking for is the second one, when the first ball is descending. The second ball will have 2.3 seconds less so the time we further use is t_c = 7.44 - 2.3 = 5.14 s. With this the speed of the second ball needed for collision at given height, can be found.

Solving a similar equation, but this time for v2 to obtain the result.

h_2=234 ft=v2*t_c-(a*t_c^2/2)--->v2=139 ft