From a mathematical point of view, the Schrödinger Equation is a LINEAR partial differential equation, as is a partial differential equation that is defined by a linear polynomial in the solution and its derivatives.
For a linear differential equation, if you got two different solutions and , then the linear combination , where and are scalars, is also a solution.
This also is valid for only one solution (think of the other solution as equal to zero, ). So, as the Schrödinger Equation is a Linear partial differential equation, then if is a solution, then must also be a solution.
This is extremely important for physicist, as let us know that the superposition principle is valid.
Answer:
b) 68,9 km/h a) picture
Explanation:
In this problem, since velocity is expressed in km/h and time in minutes, we have to convert either time to hours or velocity to km/min. It is easier to use hours.
Using this formula we pass time to hours:
Now we can plot speed vs time (image 1). The problem says that the driver uses constant speed, so all lines have to be horizontal.
Using the values of the speed we calculate the distance in each interval
Using these values and the fact that she was having lunch in the third one (therefore stayed in the same position), we plot position vs time, using initial position zero (image 2, distance is in km, not meters).
Finally, we compute the average speed with the distance over time:
2. What is the angle a of the force F in the figure above?
(a) The magnitude of the force F acting on the knot is 5.54 N.
(b) The angle α of the force F is 54.4⁰.
The given parameters:
The net vertical force on the knot is calculated as follows;
The net horizontal force on the knot is calculated as follows;
From the trig identity;
The angle α of the force F is calculated as follows;
Find the image uploaded for the complete question.
Learn more about net force here:brainly.com/question/12582625
The knot is in equilbrium, so there is no net force acting on it. Starting with the unknown force and going clockwise, denote each force by F₁, F₂, F₃, and F₄, respectively. We have
F₁ + F₂ + F₃ + F₄ = 0
Decomposing each force into horizontal and vertical components, we have
F cos(180º - α) + (5.7 N) cos(50º) + (6.2 N) cos(-44º) + (6.7 N) cos(-137º) = 0
F sin(180º - α) + (5.7 N) sin(50º) + (6.2 N) sin(-44º) + (6.7 N) sin(-137º) = 0
Recall that cos(180º - x) = - cos(x) and sin(180º - x) = sin(x), so these equations reduce to
F cos(α) ≈ - 3.22 N
F sin(α) ≈ 4.51 N
(1) Recall that for all x, sin²(x) + cos²(x) = 1. Use this identity to solve for F :
(F cos(α))² + (F sin(α))² = F ² ≈ 30.73 N² → F ≈ 5.5 N
(2) Use the definition of tangent to solve for α :
tan(α) = sin(α) / cos(α) ≈ 1.399 → α ≈ 126º
or about 54º from the horizontal from above on the left of the knot.
Answer:
1. Scalar
2.Vector
3. Scalar
4. Vector
5.Scalar
6.Scalar
7.Vector
8.Vector
9.Scalar
10.Scalar
11.Scalar
12. Vector
13.Scalar
Explanation:
Scalar refers to magnitude, and Vectors include magnitude with directions.
Answer:
Ionization potential of C⁺⁵ is 489.6 eV.
Wavelength of the transition from n=3 to n=2 is 1.83 x 10⁻⁸ m.
Explanation:
The ionization potential of hydrogen like atoms is given by the relation :
.....(1)
Here E is ionization potential, Z is atomic number and n is the principal quantum number which represents the state of the atom.
In this problem, the ionization potential of Carbon atom is to determine.
So, substitute 6 for Z and 1 for n in the equation (1).
E = 489.6 eV
The wavelength (λ) of the photon due to the transition of electrons in Hydrogen like atom is given by the relation :
......(2)
R is Rydberg constant, n₁ and n₂ are the transition states of the atom.
Substitute 6 for Z, 2 for n₁, 3 for n₂ and 1.09 x 10⁷ m⁻¹ for R in equation (2).
= 5.45 x 10⁷
λ = 1.83 x 10⁻⁸ m
Answer:
it A
Explanation:
Its a negative ion that hss one less valence electron than a netural bromine atom