Calculate the final temperature of a mixture of 0.350 kg of ice initially at 218°C and 237 g of water initially at 100.0°C.

Answers

Answer 1
Answer:

Answer:

115 ⁰C

Explanation:

Step 1: The heat needed to melt the solid at its melting point will come from the warmer water sample. This implies

q_(1) +q_(2) =-q_(3) -----eqution 1

where,

q_(1) is the heat absorbed by the solid at 0⁰C

q_(2) is the heat absorbed by the liquid at 0⁰C

q_(3) the heat lost by the warmer water sample

Important equations to be used in solving this problem

q=m *c*\delta {T}, where -----equation 2

q is heat absorbed/lost

m is mass of the sample

c is specific heat of water, = 4.18 J/0⁰C

\delta {T} is change in temperature

Again,

q=n*\delta {_f_u_s} -------equation 3

where,

q is heat absorbed

n is the number of moles of water

tex]\delta {_f_u_s}[/tex] is the molar heat of fusion of water, = 6.01 kJ/mol

Step 2: calculate how many moles of water you have in the 100.0-g sample

=237g *(1 mole H_(2) O)/(18g) = 13.167 moles of H_(2)O

Step 3: calculate how much heat is needed to allow the sample to go from solid at 218⁰C to liquid at 0⁰C

q_(1) = 13.167 moles *6.01(KJ)/(mole) = 79.13KJ

This means that equation (1) becomes

79.13 KJ + q_(2) = -q_(3)

Step 4: calculate the final temperature of the water

79.13KJ+M_(sample) *C*\delta {T_(sample)} =-M_(water) *C*\delta {T_(water)

Substitute in the values; we will have,

79.13KJ + 237*4.18(J)/(g^(o)C)*(T_(f)-218}) = -350*4.18(J)/(g^(o)C)*(T_(f)-100})

79.13 kJ + 990.66J* (T_(f)-218}) = -1463J*(T_(f)-100})

Convert the joules to kilo-joules to get

79.13 kJ + 0.99066KJ* (T_(f)-218}) = -1.463KJ*(T_(f)-100})

79.13 + 0.99066T_(f) -215.96388= -1.463T_(f)+146.3

collect like terms,

2.45366T_(f) = 283.133

T_(f) = = 115.4 ⁰C

Approximately the final temperature of the mixture is 115 ⁰C


Related Questions

An object moving with uniform acceleration has a velocity of 10.5 cm/s in the positive x-direction when its x-coordinate is 2.72 cm. If its x-coordinate 2.30 s later is ?5.00 cm, what is its acceleration? The object has moved to a particular coordinate in the positive x-direction with a certain velocity and constant acceleration; then it reverses its direction and moves in the negative x-direction to a particular x-coordinate in time t. We are given an initial velocity vi = 10.5 cm/s in the positive x-direction when the initial position is xi = 2.72 cm (t = 0). We are given that at t = 2.30 s, the final position is xf = ?5.00 cm. The acceleration is uniform so that we have the following equation in terms of the constant acceleration a. Xf-Xi=Vit-1/2at^2 Now we substitute the given values into this equation. (___cm)-(___cm)=(___cm/s)(__s)+1/2a(___s)
A local meteorologist reports the day’s weather. "Currently sunny outside, 34°F. Skies will become overcast later this afternoon, as temperatures drop to 25°F, with windy conditions out of the north at 10–15 miles per hour. Radar indicates 2–3 inches of snow expected to fall later tonight.” Which information is qualitative? These are non-numerical, descriptive data. These are numerical data that have been measured. “sunny” “25°F” “2–3 inches of snow” “10–15 miles per hour”
An object is projected with speed of 4ms at an angle of 60° to horizontal. Calculate the time of flight of the object. (g=10ms2)​
A tuning fork vibrates at 15,660 oscillations every minute. What is the period (in seconds) of one back and forth vibration of the tuning fork?
A motorcycle is following a car that is traveling at constant speed on a straight highway. Initially, the car and the motorcycle are both traveling at the same speed of 19.0m/s , and the distance between them is 52.0m . After t1 = 5.00s , the motorcycle starts to accelerate at a rate of 5.00m/s^2. a. How long does it take from the moment when the motorcycle starts to accelerate until it catches up with the car? In other words. b. Find t2−t1

Determine the tension in the string that connects M2 and M3.

Answers

thereforemass m1=4.8kg and the tension

in the horizontalspring T2=10N.

HOPEIT HELPS YOU

PLEASEMarkme as brainliest.

☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️✌️✌️✌️✌️✌️✌️✌️✌️❤️❤️❤️

To determine the tension in the string that connects M2 and M3, we can follow these steps:

Step 1: Identify the necessary variables. Given data (for example) could be:
- Mass of M2, which is 5 kg
- Mass of M3, which is 10 kg
- The acceleration due to gravity, which is approximately 9.8 m/s²
- The angle at which the string pulls on M2, which is 30 degrees
- Assume the system is in equilibrium, meaning there is no net acceleration, so the acceleration is 0 m/s²

Step 2: Calculate the weight of M3, which is its mass times the acceleration due to gravity. This is because weight is the force exerted by gravity on an object, which equals the object's mass times the acceleration due to gravity.

For M3, this calculation would be M3 * g = 10 kg * 9.8 m/s² = 98 N (Newtons).

Step 3: Determine the force exerted by M2 that acts along the line of the string. This won't be the full weight of M2, because the string pulls at an angle. This component of the force can be calculated using the sine of the angle, because sine gives us the ratio of the side opposite the angle (here, the force along the string) to the hypotenuse (here, the full weight of M2) in a right triangle.

The horizontal component of the force of M2 is then M2 * g * sin(30deg) = 5 kg * 9.8 m/s² * sin(30deg) = 24.5 N.

Step 4: The tension in the string is the force M3 exerts on it, which is its weight, minus the component of M2's weight that acts along the string. This is because M2 and M3 are pulling in opposite directions, so they subtract from each other.

The tension in the string is then the weight of M3, 98 N, minus the horizontal (along the string) component of M2's weight, 24.5 N.

So, the tension in the string is 98 N - 24.5 N = 73.5 N.

This is the force that the string needs to exert in order to keep M2 and M3 connected and in equilibrium.

Learn more about Tension in a string here:

brainly.com/question/34111688

#SPJ12

A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle with a constant angular speed of 120 rev/min. The cross-sectional area of thewire is 0.014 cm2. Calculate the elongation of the wire when the mass is a) at its lowest point of the path and b) at the highest point of its path

Answers

Answer:

a) the elongation of the wire when the mass is at its lowest point on the  path = 0.5 cm

b)  the elongation of the wire when the mass is at its highest point on the  path = 0.42 cm

Explanation:

Given that;

the angular speed \omega = 120 \ rev/min

Then converting it to rad/s ; we have:

= (120 \ rev/min )((2 \ \pi \ rad )/(1 \ rev) ) ((1 \ min )/(60 \ s) )

= 12.57 rad/s

The cross-sectional area of the wire A = 0.014 cm²

A = (0.014 cm²) ( (10^(-4) \ m^2)/(1 \ cm^3))

A = 0.014*10^(-4) \ m^2

mass (m) = 12.0 kg

R = 0.5 m

g = 9.8 m/s²

To calculate for the mass when its at the lowest point of the path; we use the Newton's second law of motion; which is expressed as:

T - mg = ma_(rad)

where;

a_rad = ( radical \ acceleration ) = R \omega^2

Now; we can rewrite our equation as;

T -mg = m R \omega ^2

T = mR \omega^2 + mg

T = m( R \omega^2 + g)

Replacing our given values ; we have:

T = 12.0( 0.5(12.57)^2 + 9.8)

T = 12.0( 0.5(158.0049) + 9.8)

T = 12.0( 79.00245 + 9.8)

T = 12.0( 88.80245)

T = 1065.6294 N

T ≅ 1066 N

Determining the elongation \delta l in the wire by using the equation

Y = (Tl)/(AY)

Making \delta l the subject of the formula; we have

\delta l = (Tl)/(AY)

where ;

l = length of the wire

T =Tension in the wire

A = cross - sectional area

Y = young's modulus

Then;

\delta l = ((1066 N)(0.5m))/((0.014*10^(-4)m^2)(7.0*10^(10)Pa))

\delta l =  ( 0.00544 m ) *((10 ^2 cm)/(1m) )

\delta l =   0.5 cm

Thus, the elongation of the wire when the mass is at its lowest point on the  path = 0.5 cm

b)

Using Newton's second law of motion also for the mass at its highest point of the path; we have:

T +mg = m R \omega ^2

T = mR \omega^2- mg

T = m( R \omega^2 - g)

Replacing our given values ; we have:

T = 12.0( 0.5(12.57)^2 - 9.8)

T = 12.0( 0.5(158.0049)-9.8)

T = 12.0( 79.00245 - 9.8)

T = 12.0( 69.20245)

T = 830.4294 N

T = 830 N

Determining the elongation \delta l in the wire by using the equation

Y = (Tl)/(AY)

Making \delta l the subject of the formula; we have

\delta l = (Tl)/(AY)

where ;

l = length of the wire

T =Tension in the wire

A = cross - sectional area

Y = young's modulus

Then;

\delta l = ((830 N)(0.5m))/((0.014*10^(-4)m^2)(7.0*10^(10)Pa))

\delta l =  ( 0.00424 m ) *((10 ^2 cm)/(1m) )

\delta l =   0.42 cm

Thus, the elongation of the wire when the mass is at its highest point on the  path = 0.42 cm

A solid 0.6950 kg ball rolls without slipping down a track toward a vertical loop of radius ????=0.8950 m . What minimum translational speed ????min must the ball have when it is a height H=1.377 m above the bottom of the loop in order to complete the loop without falling off the track? Assume that the radius of the ball itself is much smaller than the loop radius ???? . Use ????=9.810 m/s2 for the acceleration due to gravity.

Answers

Answer:

The minimum transnational speed is 4.10 m/s.

Explanation:

Given that,

Mass of solid ball = 0.6950 kg

Radius = 0.8950 m

Height = 1.377 m

We need to calculate the minimum velocity of the ball at bottom of the loop to complete the track

Using formula velocity at lower point

v_(min)=√(5gR)

Put the value into the formula

v_(min)=√(5*9.8*0.8950)

v_(min)=6.62\ m/s

We need to calculate the velocity

Using conservation of energy

P.E at height +K.E at height = K.E at the bottom

mgH+(1)/(2)mv^2=(1)/(2)m(√(5gR))^2

v^2=(√(5gR))^2-2gH

v^2=(6.62)^2-2*9.8*1.377

v^2=16.8352

v=√(16.8352)

v=4.10\ m/s

Hence, The minimum transnational speed is 4.10 m/s.

Final answer:

The minimum translational speed the solid ball must have when it is at a height H=1.377 m above the bottom of the loop to successfully complete the loop without falling off the track is approximately 7.672 m/s. This was derived using principles of energy conservation.

Explanation:

The minimum translational speed must be sufficient enough to maintain contact with the track even at the highest point of the loop. Using the principle of energy conservation, the total energy at the height H, assuming potential energy to be zero here, should be equal to the total energy at the highest point of the loop. Here, the total energy at height H will consist of both kinetic and potential energy while at the top of the loop it consists of potential energy only. Setting these equations equal to each other: 0.5 * m * v² + m * g * H = m * g * 2R Solving the above equation for v:v = √2g (2R-H). Substituting known values henceforth gives us √2*9.81*(2*0.895-1.377) = 7.672 m/s. Hence, the ball must have a minimum translational speed of approximately 7.672 m/s at height H to complete the loop without falling.

Learn more about Minimum Translational Speed here:

brainly.com/question/13030773

#SPJ3

"A proton is placed in a uniform electric field of 2750 N/C. You may want to review (Page) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Electron in a uniform field. Calculate the magnitude of the electric force felt by the proton. Express your answer in newtons.(F = ? )Calculate the proton's acceleration.
( a= ? m/s2 )

Calculate the proton's speed after 1.40 {\rm \mu s} in the field, assuming it starts from rest.
( V= ? m/s )"

Answers

To solve this problem we will start from the definition of Force, as the product between the electric field and the proton charge. Once the force is found, it will be possible to apply Newton's second law, and find the proton acceleration, knowing its mass. Finally, through the linear motion kinematic equation we will find the speed of the proton.

PART A ) For the electrostatic force we have that is equal to

F=qE

Here

q= Charge

E = Electric Force

F=(1.6*10^(-19)C)(2750N/C)

F = 4.4*10^(-16)N

PART B) Rearrange the expression F=ma for the acceleration

a = (F)/(m)

Here,

a = Acceleration

F = Force

m = Mass

Replacing,

a = (4.4*10^(-16)N)/(1.67*10^(-27)kg)

a = 2.635*10^(11)m/s^2

PART C) Acceleration can be described as the speed change in an instant of time,

a = (v_f-v_i)/(t)

There is not v_i then

a = (v_f)/(t)

Rearranging to find the velocity,

v_f = at

v_f = (2.635*10^(11))(1.4*10^(-6))

v_f = 3.689*10^(5)m/s

Final answer:

The magnitude of the electric force felt by the proton is 4.4 x 10^-16 N. The proton's acceleration is 2.64 x 10^11 m/s^2. The proton's speed after 1.40 μs in the field is 3.70 x 10^5 m/s.

Explanation:

The charge of a proton is 1.6 x 10-19 coulombs and the electric field strength is 2750 N/C. Therefore, the magnitude of the electric force felt by the proton is (1.6 x 10-19 C)(2750 N/C) = 4.4 x 10-16 N. The mass of a proton is approximately 1.67 x 10-27 kilograms. Therefore, the proton's acceleration is (4.4 x 10-16 N)/(1.67 x 10-27 kg) = 2.64 x 1011 m/s2. Since the proton starts from rest, its initial velocity (u) is 0. Therefore, the proton's speed after 1.40 μs is v = (2.64 x 1011 m/s2)(1.40 x 10-6 s) = 3.70 x 105 m/s.

Learn more about Proton in Electric Field here:

brainly.com/question/32825186

#SPJ3

A section of highway has the following flowdensity relationship q = 50k − 0.156k2 [with q in veh/h and k in veh/mi]. What is the capacity of the highway section, the speed at capacity, and the density when the highway is at one-quarter of its capacity?

Answers

(a) The capacity will be "4006.4 veh/h".

(b) The speed at capacity be "25 mph".

(c) The density will be "299 veh/mi".

Given:

  • q = 50k - 0.156 k^2

At max. flow density,

  • (dd)/(dk) =0
  • ((dq)/(dt) ) = 50-0.321k =0

(a)

k = ((50)/(0.312) )

     = 160.3 \ or \ 160 \ veh/mi

By substituting the value,

q = 50k-0.156k^2

     = 50* 160.3-0.156* (160.3)^2

     = 4006.4 \ veh/h

(b)

The speed will be:

U = (q)/(k)

      = (4006.4)/(160.3)

      = 25 \ mph

(c)

The density be:

1001.6 = 50k-0.156k^2

  0.156k^2-50k+1001.6 =0

  k = 21.5 \ veh/mi \ or \ 299 \ veh/mi

Thus the responses above are correct.

Find out more information about density here:

brainly.com/question/6838128

Answer:

a) capacity of the highway section = 4006.4 veh/h

b) The speed at capacity = 25 mph

c) The density when the highway is at one-quarter of its capacity = k = 21.5 veh/mi or 299 veh/mi

Explanation:

q = 50k - 0.156k²

with q in veh/h and k in veh/mi

a) capacity of the highway section

To obtain the capacity of the highway section, we first find the k thay corresponds to the maximum q.

q = 50k - 0.156k²

At maximum flow density, (dq/dk) = 0

(dq/dt) = 50 - 0.312k = 0

k = (50/0.312) = 160.3 ≈ 160 veh/mi

q = 50k - 0.156k²

q = 50(160.3) - 0.156(160.3)²

q = 4006.4 veh/h

b) The speed at the capacity

U = (q/k) = (4006.4/160.3) = 25 mph

c) the density when the highway is at one-quarter of its capacity?

Capacity = 4006.4

One-quarter of the capacity = 1001.6 veh/h

1001.6 = 50k - 0.156k²

0.156k² - 50k + 1001.6 = 0

Solving the quadratic equation

k = 21.5 veh/mi or 299 veh/mi

Hope this Helps!!!

The speed of light is 3 x 10 m/s.Calculate the frequency of light that is absorbed the most by the 100m length of fibre.
Give your answer in standard form.

Answers

Answer:

3 * 10 {}^6