Answer: D) 2.41 m
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of solute =
volume of solution = 1L = 1000 ml (1L=1000ml)
Mass of solution=
mass of solute = 292 g
mass of solvent = mass of solution - mass of solute = (1108- 292) g = 816g = 0.816 kg
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution will be 2.41 mole/kg
In this problem, we calculate molality by using the given mass of the solute, the mass of the solvent, and the molar mass of the solute. After performing the necessary calculations, we find that the molality is 2.41 m.
The subject of this student's question is molality, which is a measure of the concentration of a solute in a solution. It is defined as the number of moles of solute per kilogram of solvent. To find the molality (m), we need to know the mass of the solute and the mass of the solvent in the solution.
Given, that the solution contains 292g of Mg(NO3)2 per liter (which is the mass of the solute). The density of the solution is 1.108g/mL. We know that 1L = 1000mL, so the mass of the solution is density x volume = 1.108g/mL x 1000mL = 1108g.
We need to find the mass of the solvent (water). The mass of the solution is the mass of the solute + the mass of the solvent. So, the mass of the solvent is 1108g(mass of the solution) - 292g(mass of solute) = 816g or 0.816gkg.
The molar mass of Mg(NO3)2 is 148.31452 g/mol. So, the number of moles of Mg(NO3)2 in the solution is moles = mass / molar mass = 292g / 148.31452 g/mol = 1.97 moles.
Now we can calculate molality (m) = moles of solute/mass of solvent in kg = 1.97 moles / 0.816 kg = 2.41 m. Therefore, the answer is D) 2.41 m.
#SPJ3
the length of ribbon needed to tie around a vase
B.
the size of a student's waist
C.
the distance from the ground to the top of a ramp
D.
the circumference of an orange
Answer:
C
the distance from the ground to the top of a ramp
Answer:
Sodium dihydrogen phosphate + calcium carbonate
Full ionic equation
2 Na⁺(aq) + 2 H₂PO₄⁻(aq) + CaCO₃(s) ⇄ 2 Na⁺(aq) + CO₃²⁻(aq) + Ca(H₂PO₄)₂(s)
Net ionic equation
2 H₂PO₄⁻(aq) + CaCO₃(s) ⇄ CO₃²⁻(aq) + Ca(H₂PO₄)₂(s)
Sodium oxalate + calcium carbonate
Full ionic equation
2 Na⁺(aq) + C₂O₄²⁻(aq) + CaCO₃(s) ⇄ 2 Na⁺(aq) + CO₃²⁻(aq) + CaC₂O₄(s)
Net ionic equation
C₂O₄²⁻(aq) + CaCO₃(s) ⇄ CO₃²⁻(aq) + CaC₂O₄(s)
Sodium hydrogen phosphate + calcium carbonate
Full ionic equation
2 Na⁺(aq) + HPO₄²⁻(aq) + CaCO₃(s) ⇄ CaHPO₄(s) + 2 Na⁺(aq) + CO₃²⁻(aq)
Net ionic equation
HPO₄²⁻(aq) + CaCO₃(s) ⇄ CaHPO₄(s) + CO₃²⁻(aq)
Explanation:
Let's consider two kind of equations:
O neutrons
O Neither... An atom isn't neutral!
Taking into account the constitution of an atom, an atom is neutral because it has the same number of protons as it has electrons.
An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element.
Every atom consists of a nucleus in which neutrons and protons meet and energy levels where electrons are located.
The neutron is an electrically neutral subatomic particle, while the proton has a positive electrical charge. Electrons have a negative charge, move around the nucleus at different energy levels and are attracted to protons, positive in the atom through electromagnetic force.
An atom is considered electrically neutral when it has the same number of positive and negative charges. That is, an electrically neutral atom has the same number of protons (with a positive charge) and electrons (with a negative charge).
In summary, an atom is neutral because it has the same number of protons as it has electrons.
Learn more about atomelectrically neutral:
#SPJ2
O A experiment
OB. observational research
Oc.
survey
OD
case study
Answer:
experiment is the answer
Answer:
One molecule
Explanation
But there is three different atoms forming this one NaOH. The three atoms are Na, O and H, that is one sodium, one oxygen, and one hydrogen.
b. The partial pressure of each gas
c. The mole fraction of each gas
Answer:
a. .
b.
c.
Explanation:
Hello,
In this case, considering that the valve is opened, we can use the Boyle's law in order to compute the final pressure of argon by considering its initial pressure and volume and a final volume of 5.0 L:
And the final pressure of helium:
Which actually are the partial pressure of both of them, it means that the total pressure is:
Finally, the mole fraction of each gas is computed by considering the Dalton's law:
Best regards.