Answer:
This happens twice a year during Earth's orbit. Near June 21 the north pole is tilted 23.5 degrees toward our Sun and the northern hemisphere experiences summer solstice, the longest day of the northern hemisphere year.
...
Do other planets have seasons?
Uranus
30,589
97.8
Spring Equinox* 2050
Summer Solstice*
points toward the sun.
closer the earth is to the sun the more hot it will be the closer it is to summer,
you can see at D northern hemisphere is closest to sun and the north pole is pointing toward the sun.
a) air
b) land
c) water
d) birds in the air
e) trees on land
f) organisms in the water
The resources and organisms are affected by oil spillages are Air, Water, and Organisms in water
Oil spillage can cause to the general environment and the organisms in the environment.
Based on the passage, the resources and organisms are affected by oil spillages include the following;
Learn more about oil spillage here: brainly.com/question/2880031
#SPJ2
Answer:
A,C,F/Air,water,orginisams in water
Explanation:
Using Boyle's Law of gases which states that the pressure and volume of a gas have an inverse relationship when temperature is kept constant, we find that when the pressure of the gas increases from 5.0 to 7.0 atmospheres, the volume of the gas decreases to approximately 3.57 liters.
The question pertains to the application of Boyle's Law, a fundamental concept in the field of physics dealing with gases. Boyle's Law states that the pressure and volume of a gas have an inverse relationship when the temperature is held constant. This means if the pressure of a gas increases, the volume decreases, and vice versa.
In this case, you have 5.0 liters of a gas under an initial pressure of 5.0 atmospheres. The pressure is then increased to 7.0 atmospheres, and you are asked to determine the new volume of the gas. To solve this problem, we use the formula for Boyle's Law, which is P1V1 = P2V2. We know P1 (initial pressure) is 5.0 atmospheres and V1 (initial volume) is 5.0 liters. P2 (final pressure) is increased to 7.0 atmospheres and V2 (final volume) is what we are trying to find.
So, we plug the numbers into the equation and get: 5.0 atmospheres * 5.0 liters = 7.0 atmospheres * V2. Solving for V2, we find V2 to be approximately 3.57 liters. Therefore, when the pressure of the gas is increased from 5.0 atmospheres to 7.0 atmospheres, the volume decreases to around 3.57 liters, while the temperature remains constant.
#SPJ12
A reaction mixture initially contains a Br2 partial pressure of 751 torr and a Cl2 partial pressure of 737 torr at 150 K.
Calculate the equilibrium partial pressure of BrCl.
Answer:
the equilibrium partial pressure of BrCl is pBC = 784.52 torr
Explanation:
Since
Br₂(g) + Cl₂(g) ⇌ 2BrCl(g) , Kp=1.112 at 150 K
denoting BC as BrCl , B as Br₂ , C as Cl₂, p as partial pressure , then
Kp = pBC²/[pB*pC]
solving for pBC
pBC = √(Kp*pB*pC)
replacing values
pBC = √(Kp*pB*pC) = √(1.112*751 torr*737 torr) = 784.52 torr
pBC = 784.52 torr
then the equilibrium partial pressure of BrCl is pBC = 784.52 torr
To calculate the equilibrium partial pressure of BrCl, use the equilibrium constant expression and substitute the given partial pressures of Br2 and Cl2. The equilibrium partial pressure of BrCl is approximately 0.0375 atm.
To calculate the equilibrium partial pressure of BrCl, we need to use the equilibrium constant expression:
Kp = ([BrCl]^2) / ([Br2] * [Cl2])
Given that the equilibrium partial pressures of Br2 and Cl2 are 0.450 atm and 0.115 atm, respectively, we can substitute these values into the expression:
1.112 = ([BrCl]^2) / (0.450 * 0.115)
Simplifying the expression, we find that the equilibrium partial pressure of BrCl is approximately 0.0375 atm.
#SPJ12
Answer:
Br - C ≡ N
Explanation:
To draw the Lewis line-bond structure we need to bear in mind the octet rule, which states that in order to gain stability each atom tends to share electrons until it has 8 electrons in its valence shell.
The most stable structure that respects these premises is:
Br - C ≡ N
It does not have any H atom.
Answer:
true
Explanation:
Answer:
Explanation:
Chemical species which can behave as both acids and bases are known as amphoteric species.
can behave as both acid and base.
can donate H+:
can accept H+ as well:
HF can only behave as acid, as it can only donate H+.
is a conjugate acid of .
is a conjugate base.
In chemistry, an amphoteric species can act as both a base and an acid. Among the given options, HCO3- (bicarbonate ion) is amphoteric because it can either donate or accept protons.
Among the provided options, the species that are amphoteric are HCO3- (bicarbonate ion). The term amphoteric refers to substances that can act both as an acid and a base. In other words, they can either donate or accept protons. Let's take HCO3- as an example. This ion can act as a base by accepting H+, forming H2CO3, or it can act as an acid by donating H+, forming CO32-. This dual behavior makes it an amphoteric species.
#SPJ11