In the calorimetry experiment which energy will be calculated during the heat exchange if water is used?

Answers

Answer 1
Answer:

From the coffee cup to the thermometer

The assumption behind the science of calorimetry is that the energy gained or lost by the water is equal to the energy lost or gained by the object under study. So if an attempt is being made to determine the specific heat of fusion of ice using a coffee cup calorimeter, then the assumption is that the energy gained by the ice when melting is equal to the energy lost by the surrounding water. It is assumed that there is a heat exchange between the iceand the water in the cup and that no other objects are involved in the heat exchanged. This statement could be placed in equation form as

Qice = - Qsurroundings = -Qcalorimeter

The role of the Styrofoam in a coffee cup calorimeter is that it reduces the amount of heat exchange between the water in the coffee cup and the surrounding air. The value of a lid on the coffee cup is that it also reduces the amount of heat exchange between the water and the surrounding air. The more that these other heat exchanges are reduced, the more true that the above mathematical equation will be. Any error analysis of a calorimetry experiment must take into consideration the flow of heat from system to calorimeter to other parts of the surroundings. And any design of a calorimeter experiment must give attention to reducing the exchanges of heat between the calorimeter contents and the surroundings.

Answer 2
Answer:

The energy calculated while dealing with the calorimeter experiment are the latent heat of vaporization, latent heat of fusion and the heat required to change the temperature of the substances.

Further Explanation:

The calorimeter works on the principle of conservation of energy. The amount of heat given by one part of the system is equal to the amount of heat gained by another part provided that the calorimeter does not loss any heat to the environment.

Consider that ice is mixed with water at some temperature. Then the water being at higher temperature losses heat to the ice at lower temperature. The ice gains the heat from the water and the system reaches an equilibrium at which the solution of ice and water has the same amount of energy at a particular temperature.

The different types of energies dealt with in the calorimetry experiment are as follows:

Latent heat of fusion:

The amount of energy required by a body when it is melted from its frozen state or freezes from its melted state is termed as the latent heat of fusion.

For example:  

The small amount of ice is mixed with water in a calorimeter. Here, the ice requires the latent heat of fusion that leads to the melting of ice and converts it into water.

Latent heat of vaporization:

The amount of heat required to convert one gram of liquid to vapor without raising its temperature is known as latent heat of vaporization.

For example:

The water is boiling at   in a calorimeter. Here, the water requires latent heat of vaporization which leads to the vaporization of water and convert it into vapors.

Thus, the latent heat of fusion, latent heat of vaporization and the heat required to change the temperature of the substance are the energies measured with the calorimeter.

Learn more:

1.  Transnational kinetic energy brainly.com/question/9078768.

2.  Expansion of gas brainly.com/question/9979757.

3. Conservation of momentum brainly.com/question/9484203.

Answer Details:

Grade: College

Subject: Physics

Chapter: Heat and Energy

Keywords:

Heat, energy, calorimeter, latent heat, vaporization, fusion, experiment, temperature, melting, boiling, liquid, vapor, evaporation, condensation, freeze.


Related Questions

The concentration of Biochemical Oxygen Demand (BOD) in a river just downstream of a wastewater treatment plant’s effluent pipe is 75 mg/L. If the BOD is destroyed through a first-order reaction with a rate constant equal to 0.05/day, what is the BOD concentration 50 km downstream? The velocity of the river is 15 km/day.
A concrete highway is built of slabs 18.0 m long (at 25 °C). How wide should the expansion cracks be (at 25 °C) between the slabs to prevent buckling if the annual extreme temperatures are −32 °C and 52 °C?(the coefficient of linear expansion of concrete is 1.20 × 10 − 5 °C-1) g
A Hooke's law spring is mounted horizontally over a frictionless surface. The spring is then compressed a distance d and is used to launch a mass m along the frictionless surface. What compression of the spring would result in the mass attaining double the kinetic energy received in the above situation?
A 30 W engine generates 3600 J of energy. How long did it run for?
Two charged particles are located on the x axis. The first is a charge +Q at x = −a. The second is an unknown charge located at x = +3a. The net electric field these charges produce at the origin has a magnitude of 2keQ/a2 . Explain how many values are possible for the unknown charge and find the possible values.

If the diameter of the black marble is 3.0cm, and bye using the formula for volume, what is a good approximation if it’s volume? Record to the ones place

Answers

Complete question is;

If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?

Answer:

14 cm³

Explanation:

We will assume that this black marble has the shape of a sphere from online sources.

Now, volume of a sphere is given by;

V = (4/3)πr³

We are given diameter = 3 cm

We know that radius = diameter/2

Thus; radius = 3/2 = 1.5 cm

So, volume = (4/3)π(1.5)³

Volume ≈ 14.14 cm³

A good approximation of its volume = 14 cm³

A stone is thrown with an initial speed of 11.5 m/s at an angle of 50.0 above the horizontal from the top of a 30.0-m-tall building. Assume air resistance is negligible, and g = 9.8 m/s2. What is the magnitude of the horizontal displacement of the rock?

Answers

Answer:

The magnitude of the horizontal displacement of the rock is 7.39 m/s.

Explanation:

Given that,

Initial speed = 11.5 m/s

Angle = 50.0

Height = 30.0 m

We need to calculate the horizontal displacement of the rock

Using formula of horizontal component

v_(x)=u\cos\theta

Put the value into the formula

v_(x)=11.5*\cos50

v_(x)=7.39\ m/s

Hence, The magnitude of the horizontal displacement of the rock is 7.39 m/s.

Final answer:

The question is about determining the horizontal displacement of a projectile based on the given initial speed and projection angle and the height of the launch. This can be calculated using the equations of motion, specifically those pertaining to projectile motion.

Explanation:

In this problem, we're dealing with projectile motion. The stone being thrown is the projectile in this case. The horizontal displacement, also known as range, of a projectile can be defined using the formula: range = (initial speed * time of flight) * cosθ, where θ is the angle of projection. The initial speed is given as 11.5 m/s and the angle as 50 degrees. Now, we need to calculate the time of flight. This can be found by the formula: time of flight = (2 * initial speed * sinθ) / g. Considering g, the acceleration due to gravity, as 9.8 m/s², we can find the time of flight and thus calculate the range. Always remember that while the vertical motion of a projectile is affected by gravity, the horizontal motion remains constant.

Learn more about Projectile Motion here:

brainly.com/question/29545516

#SPJ12

The engine of a model airplane must both spin a propeller and push air backward to propel the airplane forward. Model the propeller as three 0.30-m-long thin rods of mass 0.040 kg each, with the rotation axis at one end.What is the moment of inertia of the propeller?
How much energy is required to rotate the propeller at 5800 rpm? Ignore the energy required to push the air.

Answers

The moment of inertia of the propeller is 0.0036 kgm² and the energy required is 663.21 J

Energy required for propeller:

Given that the mass of the propellers is m = 0.040kg,

and their length is L = 0.30m

The moment of inertia of a rod with the rotation axis at one end is given by :

I = (1)/(3)m L^2

so for 3 propellers:

I=3*(1)/(3)*(0.04)*(0.3)^2

I = 0.04 × 0.09

I = 0.0036 kgm²

Now, the frequency is given f = 5800 rpm

so anguar speed, ω = 5800×(2π/60)

ω = 607 rad/s

Energy required:

E = ¹/₂Iω²

E = 0.5 × 0.0036 × (607)² J

E = 663.21 J

Learn more about moment of inertia:

brainly.com/question/15248039?referrer=searchResults

Solution :

Given :

Length of the propeller rods, L =0.30 m

Mass of each, M = 0.040 kg

Moment of inertia of one propeller rod is given by  

$I=(1)/(3)* M * L^2$

Therefore, total moment of inertia is

$I=3 * (1)/(3)* M * L^2$

$I=M* L^2$

$I=0.04* (0.3)^2$

  $0.0036 \ kg \ m^2$

Now energy required is given by

$E=(1)/(2)* I * \omega^2 $

where, angular speed, ω = 5800 rpm

$\omega = 5800 * (2 \pi)/(60) $

 = 607.4 rad/s

Therefore energy,

$E=(1)/(2)* 0.0036 * (607.4)^2 $

   = 664.1 J

In the circuit shown in the figure above, suppose that the value of R1 is 100 k ohms and the value of R2 is 470 k ohms. At which of the following locations in the circuit would you measure the highest voltage with your meter? A. Between points A and B
B. Between points A and C
C. Between points B and E
D. Between points B and C​

Answers

Answer:

A

Explanation:

voltage between A and C is equal battery's voltage.

A toy airplane is flying at a speed of 6 m/s with an acceleration of 0.3 m/s2How fast is it flying after 4 seconds?
A. 5.7 m/s
B. 2.6 m/s
C. 13.9 m/s
D. 7.2 m/s
SUBMIT

Answers

Answer:

D

Explanation:

0.3=v-6/4

make v the subject

v=7.2ms^2

Question 11 of 15When hydrogen is attached to the more highly electronegative oxygen atom in
a water molecule,
A. the electronegative atom becomes strongly positive
B. the hydrogen atom becomes partially positive
O C. the oxygen atom becomes partially negative

If answer is right WILL GIVE BRAINLIEST
D. the hydrogen atom becomes partially negative

Answers

Answer:

I'm leaning twards A

Explanation:

I think B but I’m not sure
Other Questions