You measure the velocity of a drag racer that accelerates with constant acceleration. You want to plot the data and determine the acceleration of the dragster. Would you use a. a) Linear equationb) Quadratic equation
c) cubic equation
d) a higher order equation

Answers

Answer 1
Answer:

Answer:

a) Linear equation

Explanation:

Definition of acceleration

a=(dv)/(dt)\n

if a=constant and we integrate the last equation

v(t)=v_(o)+a*t

So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.


Related Questions

If a pressure gauge measure an increase in 3×10^(5)Pa on an area of 0.7 m^2, calculate the increase in the force applied to the area?​
What is the correct formula for barium nitride? A. Ba3N2,в. BaNс. Ва2N3D. Ba2N
Why is there so much more carbon dioxide in the atmosphere of Venus than in that of Earth? Why so much more carbon dioxide than on Mars?
An object moving with uniform acceleration has a velocity of 10.5 cm/s in the positive x-direction when its x-coordinate is 2.72 cm. If its x-coordinate 2.30 s later is ?5.00 cm, what is its acceleration? The object has moved to a particular coordinate in the positive x-direction with a certain velocity and constant acceleration; then it reverses its direction and moves in the negative x-direction to a particular x-coordinate in time t. We are given an initial velocity vi = 10.5 cm/s in the positive x-direction when the initial position is xi = 2.72 cm (t = 0). We are given that at t = 2.30 s, the final position is xf = ?5.00 cm. The acceleration is uniform so that we have the following equation in terms of the constant acceleration a. Xf-Xi=Vit-1/2at^2 Now we substitute the given values into this equation. (___cm)-(___cm)=(___cm/s)(__s)+1/2a(___s)
A thin flashlight beam traveling in air strikes a glass plate at an angle of 52° with the plane of the surface of the plate. If the index of refraction of the glass is 1.4, what angle will the beam make with the normal in the glass?

Calculate the de Broglie wavelength of an electron and a one-ton car, both moving with speed of 100 km/hour. Based on your calculation could you predict which will behave like a "quantum particle" and why. Please explain each step in words and detail.

Answers

Answer :

(a). The wavelength of electron is 26.22 μm.

(b).The wavelength of car is 2.38*10^(-38)\ m

Explanation :

Given that,

Speed = 100 km/hr

Mass of car = 1 ton

(a). We need to calculate the wavelength of electron

Using formula of wavelength

\lambda_(e)=(h)/(p)

\lambda_(e)=(h)/(mv)

Put the value into the formula

\lambda_(e)=(6.63*10^(-34))/(9.1*10^(-31)*100*(5)/(18))

\lambda=0.00002622

\lambda=26.22*10^(-6)\ m

\lambda=26.22\ \mu m

(II).  We need to calculate the wavelength of car

Using formula of wavelength again

\lambda_(e)=(6.63*10^(-34))/(1000*100*(5)/(18))

\lambda=2.38*10^(-38)\ m

The wavelength of the electron is greater than the dimension of electron and the wavelength of car is less than the dimension of car.

Therefore, electron is quantum particle and car is classical.

Hence, (a). The wavelength of electron is 26.22 μm.

(b).The wavelength of car is 2.38*10^(-38)\ m.

A proton is moving horizontally halfway between two parallel plates that are separated by 0.60 cm. The electric field due to the plates has magnitude 720,000 N/C between the plates away from the edges. If the plates are 5.6 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.

Answers

Answer:

v = 4,244,699 m/s = (4.245 × 10⁶) m/s

Explanation:

The electric force on the proton is given by

F = qE

where q = charge on the proton = (1.602 × 10⁻¹⁹) C

E = Electric field = 720,000 N/C

F = (1.602 × 10⁻¹⁹ × 720000)

F = (1.153 × 10⁻¹³) N

But this force will accelerate the proton in this magnetic field in a form of trajectory motion.

We can obtain the acceleration using Newton's first law of motion relation

F = ma

m = mass of a proton = (1.673 × 10⁻²⁷) kg

a = (F/m)

a = (1.153 × 10⁻¹³)/(1.673 × 10⁻²⁷)

a = 68,944,411,237,298 m/s²

a = (6.894 × 10¹³) m/s²

This acceleration directs the proton from the positive plate to the negative plate, covering a distance of y = 0.006 m (the distance between the plates)

Using Equations of motion, we can obtain the time taken for the proton to move from the rest at the positive plate to the negative one.

u = initial velocity of the proton = 0 m/s

y = vertical distance covered by the proton = 0.006 m

a = acceleration of the proton in this direction = (6.894 × 10¹³) m/s²

t = time taken for the proton to complete this distance = ?

y = ut + (1/2) at²

0.006 = 0 + [(1/2)×(6.894 × 10¹³)×t²]

0.006 = (3.447 × 10¹³) t²

t² = (0.006)/(3.447 × 10¹³)

t² = 1.741 × 10⁻¹⁶

t = (1.32 × 10⁻⁸) s

Then we can then calculate the minimum speed to navigate the entire length of the plates without hitting the plates.

v = ?

x = 0.056 n

t = (1.32 × 10⁻⁸)

v = (x/t)

v = (0.056)/(1.32 × 10⁻⁸)

v = 4,244,699 m/s = (4.245 × 10⁶) m/s

Hope this Helps!!!

Answer:

v = 9.09×10⁵m/s

Explanation:

Given

d = the distance between plates = 0.6cm = 0.006

E = Electric field strength = 720000N/C

m =mass of the proton = 1.67 ×10-²⁷ kg

The

Electric potential energy of the field is converted into the the kinetic energy of the proton.

So

qV = 1/2mv²

But V = Ed

So q(Ed) = 1/2mv²

v² = 2qEd/m

v = √(2qEd/m)

v = √(2×1.6×10-¹⁹×720000×0.006/1.67×10-²⁷)

v = 9.09×10⁵m/s

The animal that is hunted and consumed is considered the

Answers

Predator? like they hunt their prey

Answer:

prey

Explanation:

As in problem 80, an 76-kg man plans to tow a 128000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that he instead attempts the feat by pulling the cable at an angle of 6.7° above the horizontal. The coefficient of static friction between his shoes and the runway is 0.87. What is the greatest acceleration the man can give the airplane? Assume that the airplane is on wheels that turn without any frictional resistance.

Answers

In order to solve this problem it is necessary to apply the concepts related to Newton's second law and the respective representation of the Forces in their vector components.

The horizontal component of this force is given as

F_x = Fcos(6.7)

While the vertical component of this force would be

F_y = Fsin(6.7)

In the vertical component, the sum of Force indicates that:

\sum F_y= 0

The Normal Force would therefore be equivalent to the weight and vertical component of the applied force, therefore:

N = mg+Fsin(6.7)

In the horizontal component we have that the Force of tension in its horizontal component is equivalent to the Force of friction:

\sum F_x = 0

F_x = F_(friction)

Fcos (6.7) = N\mu

Using the previously found expression of the Normal Force and replacing it we have to,

Fcos(6.7)= \mu (mg+Fsin(6.7))

Replacing,

Fcos(6.7)= (0.87) (mg+Fsin(6.7))

Fcos(6.7) = (0.87)(mg) + (0.87)(Fsin(6.7))

Fcos(6.7) -(0.87)(Fsin(6.7)) = 0.87 (mg)

F(cos(6.7)-0.87sin(6.7)) = 0.87 (mg)

F = (0.87 (mg))/((cos(6.7)-0.87sin(6.7)))

F = (0.87(128000*9.8))/((cos(6.7)-0.87sin(6.7)))

F = 1.95*10^6N

Finally the acceleration would be by Newton's second law:

F = ma

a = (F)/(m)

a = ( 1.95*10^6)/(128000)

a = 15.234m/s^2

Therefore the greatest acceleration the man can give the airplane is 15.234m/s^2

If half the kinetic energy of the initially moving object (m1m1) is transferred to the other object (m2m2), what is the ratio of their masses? Express your answers using three significant figures separated by a comma.

Answers

Answer:

0.25( m1m1) , 0.75( m2m2)

Explanation:

Noted the formula for kinetic energy is 1/2(Mass × Velocity).

Therefore the original value of the mass is 0.5, giving half away makes it 0.25 to another mass which is primarily 0.5. This now makes the new mass 0.25+0.5=0.75.

Thank you.

You have a small piece of iron at 75 °C and place it into a large container of water at 25 °C. Which of these best explains what will occur over time. A:The iron will cause the water to boil and turn to steam. B:The iron will take the heat from the water and get hotter. C:The water will cool significantly due to its colder temperature. D:Some heat from the iron will move to the water causing both to change temperatures.

Answers

D. Heat energy will be transferred within the system and if left long enough, there will be enough transferred energy to make both of them the same temperature.

D:Some heat from the iron will move to the water causing both to change temperatures.