Answer:
The spacing is 5.15 μm.
Explanation:
Given that,
Electron with energy = 25 eV
Wave length = 0.25 nm
Separation d= 0.16 mm
Distance D=3.3 m
We need to calculate the spacing
Using formula of width
Put the value into the formula
Hence, The spacing is 5.15 μm.
To calculate the spacing between maxima in a double slit interference pattern, we use the formula x = L * λ / d. Converting the given units to meters and plugging the values into the formula, we find that the spacing between maxima on the screen is approximately 5.14 micro meters.
To calculate the spacing between maxima, we can utilize the formula for double slit interference, θ = λ/d where λ represents the wavelength of the electron, d is the distance between the two slits, and θ is the angle of diffraction. Considering the small angle approximation for tan θ ≈ θ, we get x = L * λ / d, where x is the distance between maxima on the screen, and L is the distance from the slits to the screen.
Firstly, the electron's wavelength needs to be converted from nm to m, resulting in λ = 0.25 * 10^-9 m. Similarly, the slit separation d should be converted from mm to m, giving d = 0.16 * 10^-3 m. Inserting these values into the formula along with L = 3.3 m, we can solve for x.
x = (3.3 m * 0.25 * 10^-9 m) / 0.16 * 10^-3 m =~ 5.14 μm
So, the spacing between maxima on the screen is approximately 5.14 micrometers.
#SPJ11
Answer:
the derivative with respect to time
Explanation:
This is an exercise in kinematics, where the velocity is defined as a function of the position of a body of the form
v = dx/dt
where v is the velocity of the body, x is the position that we assume is a continuous and differentiable function.
The function written in the equation is the derivative with respect to time
1 pound
1 kilometer
1 gram
Answer:
it's answer is 1 newton
Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity = 60 mph = 26.8224 m/s
Final velocity = 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk = m( ² - ² )
we substitute
Δk = ×1814.37( (26.8224)² - (13.4112)² )
Δk = × 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Answer:
n = 1.22 10⁴ turns/m
Explanation:
The magnetic field in a solenoid is proportional to the intensity of the current, the number of turns per unit length (n) and the magnetic permeability (myo), is described by the equation
B = μ₀ n I
Let's clear the density of turns
n = B / (μ₀ I)
Let's replace and calculate
n = 5.81 / (4pi 10-7 3.79 102)
n = 5.81 105 / 47.63
n = 1.22 10⁴ turns / m
Answer:
option the correct is B
Explanation:
Let's analyze the different options, for a closed system
- an internal reaction changes the system, but does not affect the surrounding environment
- Heat, is a means of transfer that occurs when two bodies are in contact, one of the body can be a closed system since the only thing that happens is thermal transfer, without movement of the system itself. This is the correct result.
- Work implies a movement whereby the system must be mobile, it is not an option
- Pressure change. change in the system, but does not affect the environment
- Mass transfer is not possible in a closed system
After analyzing each option the correct one in B
To solve this problem we will apply the concepts related to the change in length in proportion to the area and volume. We will define the states of the lengths in their final and initial state and later with the given relationship, we will extrapolate these measures to the area and volume
The initial measures,
(Surface of a Cube)
The final measures
Given,
Now applying the same relation we have that
The relation with volume would be
Volume of the cube change by a factor of 2.83