Answer:
9.2 Relating Pressure, Volume,
Figure 1. In 1783, the first (a) hydrogen-filled balloon flight, (b) manned hot air balloon flight, and (c) manned hydrogen-filled balloon flight occurred. When the hydrogen-filled balloon depicted in (a) landed, the frightened villagers of Gonesse reportedly destroyed it with pitchforks and knives. The launch of the latter was reportedly viewed by 400,000 people in Paris.
Explanation:
hope its help :)
nicsfrom #philippines
Answer:
The answer is below
Explanation:
a) The location ӯ of the center of mass G of the pendulum is given as:
b) the mass moment of inertia about z axis passing the rotation center O is:
c) The mass moment of inertia about z axis passing the rotation center O is:
To solve this problem, calculate the mass of each element of the pendulum, use that information to determine the center of mass, and then apply the parallel axis theorem to calculate the two moments of inertia.
To determine the center of mass and the mass moment of inertia of the pendulum, first we calculate the individual masses of the rods: AB and OC, and the plate. Each rod has a mass of 2 kg (given mass per unit length is 3kg/m and length of each rod is 1 m from the first reference paragraph).
The center of mass ӯ can be determined using the formula for center of mass, averaging distances to each mass element weighted by their individual masses. The mass moment of inertia, also known as the angular mass, for rotation about the z axis through G is determined using the parallel axis theorem, which states that the moment of inertia about an axis parallel to and a distance D away from an axis through the center of mass is the sum of the moment of inertia for rotation about the center of mass and the total mass of the body times D squared.
Finally, the moment of inertia about the z axis passing through the center of rotation O can be calculated again using the parallel axis theorem, with distance d being the distance between points G and O.
#SPJ3
To solve this problem it is necessary to apply Snell's law and thus be able to calculate the angle of refraction.
From Snell's law we know that
Where,
n_i = Refractive indices of each material
= Angle of incidence
= Refraction angle
Our values are given as,
Replacing
Re-arrange to find
Therefore the angle will the beam make with the normal in the glass is 26°
Answer:
Explanation:
Given
Wavelength of incoming light
We know
Energy associated with this frequency
where h=Planck's constant
Energy of one mole of Photon
To calculate the energy of a mole of photons of the emission at 425 nm, use the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength. Convert the wavelength to meters, substitute the values into the equation, and calculate to find the energy of a single photon. Multiply this by Avogadro's number to find the energy of a mole of photons.
To calculate the energy of a mole of photons of the emission at 425 nm, we can use the equation E = hc/λ, where E is the energy, h is Planck's constant (6.63 x 10^-34 J·s), c is the speed of light (3.00 x 10^8 m/s), and λ is the wavelength (in meters).
Converting the wavelength to meters, we have 425 nm = 425 x 10^-9 m.
Substituting the values into the equation, we get E = (6.63 x 10^-34 J·s)(3.00 x 10^8 m/s) / (425 x 10^-9 m). Calculating this gives us the energy of a single photon of this emission. To find the energy of a mole of photons, we can multiply this value by Avogadro's number (6.02 x 10^23 photons/mol).
Therefore, the energy of a mole of photons of this emission is (6.63 x 10^-34 J·s)(3.00 x 10^8 m/s) / (425 x 10^-9 m) x (6.02 x 10^23 photons/mol).
#SPJ3
The ratio of the electric force on the proton after the wire segment is shrunk to three times its original length to the force before the segment was shrunk is 3.
The electric force between a point charge and a segment of wire with a distributed charge is given by Coulomb's law.
The formula for the electric force on a point charge q due to a segment of wire with charge Q distributed along its length L is:
where:
F is the electric force on the point charge,
k is Coulomb's constant ( 8.988 × 1 0⁹ Nm²/ C²),
q is the charge of the point charge,
Q is the charge distributed along the wire segment, and
L is the length of the wire segment.
When the wire segment is shrunk to one-third of its original length, the new length becomes 1/3 L.
The chargedistribution remains the same, only the length changes.
So, the new electric force on the proton after the segment is shrunk becomes:
The original electric force on the proton before the segment was shrunk is:
let's find the ratio :
Hence, the ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk is 3.
To learn more on Electric force click here:
#SPJ12
The ratio of the electric force on the proton after the wire segment is shrunk is equal to the ratio of their charges.
The ratio of the electric force on the proton after the wire segment is shrunk to the force before the segment was shrunk can be found using Coulomb's law. Coulomb's law states that the electric force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the charges involved are the charge of the wire segment and the charge of the proton. Since the wire segment contains 10 nC of charge, we can consider it as one of the charged objects. The proton is very far from the wire, so we can assume that the distance between them remains the same before and after the wire segment is shrunk. Therefore, the ratio of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk is equal to the ratio of their charges.
Let's assume that the initial force on the proton is Fi and the final force on the proton is Ff. Using the given information, we have:
Fi = k(q1 * q2) / r^2
where k is the electrostatic constant, q1 and q2 are the charges of the wire segment and the proton respectively, and r is the distance between them.
After the wire segment is shrunk to one-third of its original length, the charge of the wire segment remains the same and the distance between the wire segment and the proton also remains the same. Therefore, the ratio Ff/Fi can be calculated as:
Ff/Fi = (q1 * q2) / (q1 * q2) = 1
the speed at which the person falls
the change in kinetic and potential energy
the location where potential energy is zero
Answer:
the location where potential energy is zero
Explanation:
Answer:
Air resistance
Explanation:
Air resistance encountered as the person falls
Answer:
UG (x) = m*g*x*sin(Q)
Vx,f (x)= sqrt (2*g*x*sin(Q))
Explanation:
Given:
- The length of the friction less surface L
- The angle Q is made with horizontal
- UG ( x = L ) = 0
- UK ( x = 0) = 0
Find:
derive an expression for the potential energy of the block-Earth system as a function of x.
determine the speed of the block at the bottom of the incline.
Solution:
- We know that the gravitational potential of an object relative to datum is given by:
UG = m*g*y
Where,
m is the mass of the object
g is the gravitational acceleration constant
y is the vertical distance from datum to the current position.
- We will consider a right angle triangle with hypotenuse x and angle Q with the base and y as the height. The relation between each variable can be given according to Pythagoras theorem as follows:
y = x*sin(Q)
- Substitute the above relationship in the expression for UG as follows:
UG = m*g*x*sin(Q)
- To formulate an expression of velocity at the bottom we can use an energy balance or law of conservation of energy on the block:
UG = UK
- Where UK is kinetic energy given by:
UK = 0.5*m*Vx,f^2
Where Vx,f is the final velocity of the object @ x:
m*g*x*sin(Q) = 0.5*m*Vx,f^2
-Simplify and solve for Vx,f:
Vx,f^2 = 2*g*x*sin(Q)
Hence, Velocity is given by:
Vx,f = sqrt (2*g*x*sin(Q))