Explain why it is dangerous to jump from a fast moving train

Answers

Answer 1
Answer:

Answer:

When you jump off a train, you jump off a certain height and your downwards (vertical) velocity is zero. But your forward (horizontal) velocity is not. You will hit the ground on split second with your horizontal velocity practically the same as the train.

Explanation:

you be in serious injury.


Related Questions

What is displacement?
The concentration of Biochemical Oxygen Demand (BOD) in a river just downstream of a wastewater treatment plant’s effluent pipe is 75 mg/L. If the BOD is destroyed through a first-order reaction with a rate constant equal to 0.05/day, what is the BOD concentration 50 km downstream? The velocity of the river is 15 km/day.
The actual depth of a shallow pool 1.00 m deep is not the same as the apparent depth seen when you look straight down at the pool from above. How deep (in cm) will it appear to be
The height h (in feet) of an object shot into the air from a tall building is given by the function h(t) = 650 + 80t − 16t2, where t is the time elapsed in seconds. (a) Write a formula for the velocity of the object as a function of time t.
Maggots feed on dead and decaying organisms for energy. What are maggots?autotrophsproducersdecomposersheterotrophs

A Van de Graaff generator is one of the original particle accelerators and can be used to accelerate charged particles like protons or electrons. You may have seen it used to make human hair stand on end or produce large sparks. One application of the Van de Graaff generator is to create x-rays by bombarding a hard metal target with the beam. Consider a beam of protons at 1.90 keV and a current of 4.95 mA produced by the generator. (a) What is the speed of the protons (in m/s)?

Answers

Answer:

603383.67253 m/s

Explanation:

m = Mass of proton = 1.67* 10^(-27)\ kg

K = Kinetic energy = 1.9 keV

1\ ev=1.6* 10^(-19)\ J

Velocity of proton is given by

v=\sqrt{(2K)/(m)}\n\Rightarrow v=\sqrt{(2* 1.9* 10^3* 1.6* 10^(-19))/(1.67* 10^(-27))}\n\Rightarrow v=603383.67253\ m/s

The speed of the protons is 603383.67253 m/s

How much electrical energy is used by a 400 W toaster that is operating for 5minutes?
A. 2000 J
B. 75,000 J
C. 120,000 J
D. 300,000 J

Answers

The electrical energy used by a 400 W toaster that is operating for 5 minutes will be 120,000 J.Option C is correct.

What is the power output?

The rate of the work done is called the power output. It is denoted by P.Its unit of a watt. It is the ratio of the work done or the enrgy to the time period.

The given data in the problem is;

E is the electrical energy

P is the power output =  400 W

t is the time period = 5 minutes

The power output is given as;

\rm P= (E)/(t) \n\n\ E= P * t \n\n\ E= 400 * 300 \n\n\ E=120,000 \ J

Hence the electrical energy used by a 400 W toaster that is operating for 5 minutes will be 120,000 J.Option C is correct.

To learn more about the power output refer to the link;

brainly.com/question/22285866

Answer:

The answer is C. 120,000 J.

Explanation:

A rocket accelerates upwards at 6.20 ft/s/s. How far will the rocket travel in 2 minutes?

Answers

Answer:

44,640 ft

Explanation:

assuming the rocket started from rest, then v₀ = 0

2 min = 120 s

Δx = v₀t + 1/2at²

Δx = 0 + 1/2(6.2 ft/s²)(120 s)² = 44,640 ft ≈ 8.45 mi

Where would the normal force exerted on the rover when it rests on the surface of the planet be greater

Answers

Answer:

Normal force exerted on the rover would be greater at a point on the surface of the planet where the weight of the rover is experienced to be greater.

Explanation:

Since weight is a vector quantity, it can vary with position. Weight is the amount of force the planet exerts on the rover centered towards the planet.

Such a force is the result of gravitational pull and is quantified as:

F=G* (M.m)/(R^2)

and M=\rho* (4\pi.r^3)/(3)

where:

R = distance between the center of mass of the two bodies (here planet & rover)

G = universal gravitational constant

M = mass of the planet

m = mass of the rover

This gravitational pull varies from place to place on the planet because the planet may not be perfectly spherical so the distance R varies from place to place and also the density of the planet may not be uniform hence there is variation in weight.

Weight is basically a force that a mass on the surface of the planet experiences.

According to Newton's third law the there is an equal and opposite reaction force on the body (here rover) which is the normal force.

A 3.00N rock is thrown vertically into the air from the ground. At h=15.0m, v=25m/s upward. Use the work-energy theorem to find the initial speed of the rock.a. 3m/s
b. 30.3 m/s
c. None of the above

Answers

Answer:

so initial speed of the rock is 30.32 m/s

correct answer is b. 30.3 m/s

Explanation:

given data

h = 15.0m

v = 25m/s

weight of the rock m = 3.00N  

solution

we use here work-energy theorem that is express as here

work = change in the kinetic energy    ..............................1

so it can be written as

work = force × distance     ...................2

and

KE is express as

K.E = 0.5 × m × v²  

and it can be written as

F × d = 0.5 × m × (vf)² - (vi)²      ......................3

here

m is mass and vi and vf is initial and final velocity

F = mg = m  (-9.8)  , d = 15 m and v{f} = 25 m/s

so put value in equation 3 we get

m  (-9.8) × 15 = 0.5 × m × (25)² - (vi)²

solve it we get

(vi)² =  919

vi = 30.32 m/s

so initial speed of the rock is 30.32 m/s

" A sound wave moving through air consists of alternate regions of high pressure and low pressure. If the frequency of the sound is increased, what happens, if anything, to the distance between successive high-pressure regions, and why

Answers

Answer: wavelength will reduce

Explanation: The region of low pressure is know as the rarefraction region while the region of high pressure is the compression region.

The distance between 2 successive rarefraction or compression region is known as the wavelength.

Now the question is concerned about what an increase in frequency will cause to wavelength.

The speed of sound in air is a constant and it is approximately 343 m/s.

But recall that v = fλ

By assuming a fixed value for speed (v), we have that

k = fλ

Hence, f = k/ λ

This implies that at a fixed wave speed, the wavelength and frequency have an inverse relationship.

An increase in frequency will bring about a reduction in wavelength.