Please help really easy
please help really easy - 1

Answers

Answer 1
Answer:

Answer:

I am sure it is A because no chemical change occurs and it is a physical change.  If you can Brainllest than that would be great but if you wanna you don't have to. Hope this helps!! If wrong sorry.

Explanation:


Related Questions

You release a block from the top of a long, slippery inclined plane of length l that makes an angle θ with the horizontal. The magnitude of the block's acceleration is gsin(θ).1. For an x axis pointing down the incline and having its origin at the release position, derive an expression for the potential energy of the block-Earth system as a function of x. Suppose that the gravitational potential energy is measured relative to the ground at the bottom of the incline, UG(x=l)=0.Express your answer in terms of g and the variables m, l, x, and θ.(U^G=?)2. Use the expression you derived in the previous part to determine the speed of the block at the bottom of the incline. (Vx,f=?)Express your answer in terms of g and the variables m, l, and θ.
What it the Zeeman effect and what does it tell us about the Sun?
A piano tuner hears a beat every 2.20 s when listening to a 266.0 Hz tuning fork and a single piano string. What are the two possible frequencies (in Hz) of the string? (Give your answers to at least one decimal place.)
On a day when the water is flowing relatively gently, water in the Niagara River is moving horizontally at 4.5 m/sm/s before shooting over Niagara Falls. After moving over the edge, the water drops 53 mm to the water below.a. If we ignore air resistance, how much time does it take for the water to go from the top of the falls to the bottom? b. Express your answer to two significant figures and include the appropriate units. c. How far does the water move horizontally during this time? d. Express your answer to two significant figures and include the appropriate units.
Patricia places 1500g of fruit on a scale compressing it by 0.02m. What is the force constant of the spring on the scale. Hint: you need 2 equations to solve this.

A hollow sphere of radius 0.25 m is rotating at 13 rad/s about an axis that passes through its center. the mass of the sphere is 3.8 kg. assuming a constant net torque is applied to the sphere, how much work is required to bring the sphere to a stop?

Answers

The work required to bring the sphere to stop is equal to the kinetic energy possessed by the sphere.

Kinetic energy of a rotating body is given by,

K.E = (1)/(2)Iw^(2)

Here, I= Moment of inertia of hollow sphere,

Since, the hollow sphere is rotating about the axis passing through its center, I =(2)/(3)MR^(2)

M= Mass of the sphere= 3.8 kg,

R= Radius of gyration= Radius of the sphere= 0.25 m

w= Angular speed of the sphere = 13 rad/s

Substituting the values,

Kinetic energy =(1)/(2) *(2)/(3) (3.8)(0.25)^(2)(13.0)^(2)

= 13.4 J

∴ Work required to bring the sphere to stop is 13.4 J.

A dentist causes the bit of a high-speed drill to accelerate from an angular speed of 1.72 x 10^4 rad/s to an angular speed of 5.42 x 10^4 rad/s. In the process, the bit turns through 1.72 x 10^4 rad. Assuming a constant angular acceleration, how long would it take the bit to reach its maximum speed of 8.42 x 10^4 rad/s, starting from rest?

Answers

Answer:

The bit take to reach its maximum speed of 8,42 x10^4 rad/s in an amount of 1.097 seconds.

Explanation:

ω1= 1.72x10^4 rad/sec

ω2= 5.42x10^4 rad/sec

ωmax= 8.42x10^4 rad/sec

θ= 1.72x10^4 rad

\alpha = (w2^(2)-w1^(2)  )/(2*(\theta2 - \theta1))

α=7.67 x10^4 rad/sec²

t= ωmax / α

t= 8.42 x10^4 rad/sec  /  7.67 x10^4 rad/sec²

t=1.097 sec

A car with tires of radius 0.25 m come to a stop from 28.78 m/s (100 km/hr) in 50.0 m without any slipping of tires. Find: (a) the angular acceleration of the wheels; (b) number of revolutions made while coming to rest.

Answers

Answer:

The answer is below

Explanation:

a) Using the formula:

\omega^2=\omega_o^2+2\alpha \theta\n\n\omega=final\ angular\ velocity,\omega_o=initial\ anglular\ velocity,\alpha= angular\ acceleration,\n\theta=angular\ distance\n\nGiven\ that:\n\ninitial\ velocity(u)=28.78m/s,distance(s)=50\ m,radius(r)=0.25\ m,\nfinal/ velocity(v)=0(stop)\n\n\omega=v/r=(28.78m/s)/(0.25m) =115.12\ rad/s,\omega_o=0,\theta=s/r=(50\ m)/(0.25\ m)=200\ rad\n \n\omega^2=\omega_o^2+2\alpha \theta\n\n115.12^2=0^2+2\alpha(200)\n\n2\alpha(200)=13252.6144\n\n\alpha=33.13\ rad/s^2

b)

\theta=200\ rad=200\ rad*(1\ rev)/(2\pi\ rad)=31.83\ rev

The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00 x 103N with an effective perpendicular arm of 3.0 cm, producing an angular acceleration of the forearm of 130 rad/s2

What is the moment of inertia of the boxer's forearm?

Answers

To solve this problem it is necessary to apply the concepts related to Torque as a function of Force and distance. Basically the torque is located in the forearm and would be determined by the effective perpendicular lever arm and force, that is

\tau = F * r

Where,

F = Force

r = Distance

Replacing,

\tau = 2*10^3*0.03

\tau = 60N\cdot m

The moment of inertia of the boxer's forearm can be calculated from the relation between torque and moment of inertia and angular acceleration

\tau = I \alpha

I = Moment of inertia

\alpha = Angular acceleration

Replacing with our values we have that

I = (\tau)/(\alpha)

I = (60)/(120)

I = 0.5kg\cdot m^2

Therefore the value of moment of inertia is 0.5kg\cdot m^2

An airplane with a speed of 92.3 m/s is climbing upward at an angle of 51.1 ° with respect to the horizontal. When the plane's altitude is 532 m, the pilot releases a package. (a) Calculate the distance along the ground, measured from a point directly beneath the point of release, to where the package hits the earth.
(b) Relative to the ground, determine the angle of the velocity vector of the package just before impact. (a) Number Units (b) Number Units

Answers

Answer:

a

D =  1162.7 \  m

b

\beta =- 65.55^o

Explanation:

From the question we are told that

  The speed of the airplane is  u  =  92.3 \ m/s

   The  angle is  \theta = 51.1^o

    The altitude of the plane is  d =  532 \  m

Generally the y-component of the airplanes velocity is  

       u_y  =  v *  sin (\theta )

=>     u_y  =   92.3 *  sin ( 51.1 )

=>     u_y  =  71.83  \ m/s

Generally the displacement  traveled by the package in the vertical direction is

       d =  (u_y)t +  (1)/(2)(-g)t^2

=>       -532  = 71.83 t +  (1)/(2)(-9.8)t^2

Here the negative sign for the distance show that the direction is along the negative y-axis

 =>   4.9t^2 - 71.83t - 532 = 0

Solving this using quadratic formula we obtain that

    t =  20.06 \  s

Generally the x-component of the velocity is  

     u_x  =  u  *  cos (\theta)

=>    u_x  =   92.3  *  cos (51.1)

=>   u_x  =   57.96 \ m/s

Generally the distance travel in the horizontal  direction is    

     D =  u_x  *  t

=>   D =  57.96  *   20.06

=>    D =  1162.7 \  m

Generally the angle of the velocity vector relative to the ground is mathematically represented as

       \beta  =  tan ^(-1)[(v_y)/(v_x ) ]

Here v_y is the final  velocity of the package along the vertical  axis and this is mathematically represented as  

     v_y  =  u_y  -   gt

=>  v_y  =  71.83  -    9.8 *  20.06

=>  v_y  =  -130.05 \  m/s  

and  v_x is the final  velocity of the package which is equivalent to the initial velocity u_x

So

       \beta  =  tan ^(-1)[-130.05}{57.96 } ]

       \beta =- 65.55^o

The negative direction show that it is moving towards the south east direction

   

Calculate the slope of the 25-coil line and the 50-coil line to determine the average number of paper clips that a 1 V battery would pick up.

Answers

Answer:

For 25-turn electromagnet, Number of clips = 4.1

For 50-turn electromagnet number of clips = 9.6

Explanation:

To calculate the slope of the 25-coil line and the 50-coil line to determine the average number of paper clips that a 1 V battery would pick up.

Hence;

Using the equations gotten from the graph in the previous question and 1.0 V as the value for x, we get

For 25-turn electromagnet y = 3.663x * 0.5

(rounded to one decimal place) Number of clips = 4.1

For 50-turn electromagnet y = 7.133x 2.5

(rounded to one decimal place) Number of clips = 9.6

Other Questions