Answer:
Sodium dihydrogen phosphate + calcium carbonate
Full ionic equation
2 Na⁺(aq) + 2 H₂PO₄⁻(aq) + CaCO₃(s) ⇄ 2 Na⁺(aq) + CO₃²⁻(aq) + Ca(H₂PO₄)₂(s)
Net ionic equation
2 H₂PO₄⁻(aq) + CaCO₃(s) ⇄ CO₃²⁻(aq) + Ca(H₂PO₄)₂(s)
Sodium oxalate + calcium carbonate
Full ionic equation
2 Na⁺(aq) + C₂O₄²⁻(aq) + CaCO₃(s) ⇄ 2 Na⁺(aq) + CO₃²⁻(aq) + CaC₂O₄(s)
Net ionic equation
C₂O₄²⁻(aq) + CaCO₃(s) ⇄ CO₃²⁻(aq) + CaC₂O₄(s)
Sodium hydrogen phosphate + calcium carbonate
Full ionic equation
2 Na⁺(aq) + HPO₄²⁻(aq) + CaCO₃(s) ⇄ CaHPO₄(s) + 2 Na⁺(aq) + CO₃²⁻(aq)
Net ionic equation
HPO₄²⁻(aq) + CaCO₃(s) ⇄ CaHPO₄(s) + CO₃²⁻(aq)
Explanation:
Let's consider two kind of equations:
Answer:
504.57 K.
Explanation:
From the question given above, the following data were obtained:
Number of mole (n) = 6.81 moles
Pressure (P) = 2.99 atm
Volume (V) = 94.35 L
Gas constant (R) = 0.0821 atm.L/Kmol
Temperature (T) =.?
Using the ideal gas equation, the temperature of the ideal gas can be obtained as follow:
PV = nRT
2.99 × 94.35 = 6.81 × 0.0821 × T
282.1065 = 0.559101 × T
Divide both side by 0.559101
T = 282.1065 / 0.559101
T = 504.57 K.
Thus, the temperature of the ideal gas is 504.57 K.
The heat that is required to change the temperature of two cups of water (500 g) from room temperature (25◦C) to boiling
C) 157 kJ
Heat required= Mass of water x specific heat capacity of water x change in temperature of water required
Q=m* c* delta T
M = 500g
C = 4.184 g°C
Delta T = 100 - 25(room temp) = 75°C
Heat = 500 x 4.184 x 75
Heat = 156900 J
Heat = 156.9 KJ
Heat ~ 157.0 KJ (3.D.P)
Thus, the correct answer is C.
Learn more about "Heat":
Answer:
C
Explanation:
Heat required= Mass of water x specific heat capacity of water x change in temperature of water required
M = 500g
C = 4.184 g°C
Delta T = 100 - 25(room temp) = 75°C
Heat needed= 500 x 4.184 x 75
= 156900 J
= 156.9 KJ
~ 157.0 KJ (3.D.P)
Answer:
when gas condenses to liquid the quantity of energy converts.
Explanation:
two phase changes where the heat in energy is released
Answer:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Explanation:
Hello,
In this case, since the solubility in water is related with the presence of polar bonds in the given molecules we can see that C6H12(OH)2 has the presence two O-H bonds which promote the highest solubility via hydrogen bonds as well as the C6H13OH but in a lower degree as only on O-H bond is present. Next since the bond C-Br in is slightly close to the polar bond C6H13Br rather than the C-C bonds only had by C6H14 we can infer that C6H13Br is more soluble in water than C6H14, therefore the required order is:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Whereas C6H12(OH)2 is the most soluble and C6H14 the least soluble in water.
Best regards.
Answer:
10.8 mm
Explanation:
Step 1: Calculate the volume (V) of the copper cylinder
The cylinder has a mass of 94.6754 g and a density of 8.96 g/cm³. The volume of the cylinder is:
Step 2: Calculate the length (h) of the copper cylinder
The diameter (d) of the copper cylinder is 3.52 cm. We can calculate the length using the following expression.
Step 3: Convert the length to millimeters
We will use the relationship 1 cm = 10 mm.
B) Jet Fuel
C) steel