Answer: The value of change in internal energy of the system is, 40 J.
Explanation : Given,
Heat absorb from the surroundings = 12 J
Work done on the system = 28 J
First law of thermodynamic : It is a law of conservation of energy in which the total mass and the energy of an isolated system remains constant.
As per first law of thermodynamic,
where,
= internal energy = ?
q = heat absorb from the surroundings
w = work done on the system
Now put all the given values in this formula, we get the change in internal energy of the system.
Therefore, the value of change in internal energy of the system is, 40J.
Answer:
It is basic.
Explanation:
Bases can neutralize acids.
The reform reaction between steam and gaseous methane (CH4) produces "synthesis gas," a mixture of carbon monoxide gas and dihydrogen gas. Synthesis gas is one of the most widely used industrial chemicals, and is the major industrial source of hydrogen.
Suppose a chemical engineer studying a new catalyst for the reform reaction finds that 924 liters per second of methane are consumed when the reaction is run at 261°C and 0.96atm. Calculate the rate at which dihydrogen is being produced. Give your answer in kilograms per second. Round your answer to 2 significant digits.
Answer: The rate at which dihydrogen is being produced is 0.12 kg/sec
Explanation:
The balanced chemical equation is ;
According to ideal gas equation:
P = pressure of gas = 0.96 atm
V = Volume of gas = 924 L
n = number of moles
R = gas constant =
T =temperature =
According to stoichiometry:
1 mole of methane produces = 3 moles of hydrogen
Thus 20.2 moles of methane produces = moles of hydrogen
Mass of hydrogen =
Thus the rate at which dihydrogen is being produced is 0.12 kg/sec
B. atom
C. neutron
D. electron
Answer:
D. electron
Explanation:
Electrons have a negative charge
0.085 moles of Al are required to form 23.6 g of AlBr₃.
Let's consider the following balanced equation for the synthesis reaction of AlBr₃.
2 Al(s) + 3 Br₂(l) → 2 AlBr₃(s)
First, we will convert 23.6 g to moles using the molar mass of AlBr₃ (266.69 g/mol).
The molar ratio of Al to AlBr₃ is 2:2. The moles of Al required to form 0.0885 moles of AlBr₃ are:
0.085 moles of Al are required to form 23.6 g of AlBr₃.
You can learn more about stoichiometry here: brainly.com/question/22288091
Answer:
0.088 mole of Al.
Explanation:
First, we shall determine the number of mole in 23.6 g of AlBr₃.
This is illustrated below:
Mass of AlBr₃ = 23.6 g
Molar Mass of AlBr₃ = 27 + 3(80) = 267 g/mol
Mole of AlBr₃ =.?
Mole = mass/Molar mass
Mole of AlBr₃ = 23.6 / 267
Mole of AlBr₃ = 0.088 mol
Next, we shall writing the balanced equation for the reaction.
This is given below:
2Al(s) + 3Br₂(l) → 2AlBr₃(s)
From the balanced equation above,
2 moles of Al reacted with 3 mole of Br₂ to 2 moles AlBr₃.
Finally, we shall determine the number of mole of Al needed for the reaction as follow:
From the balanced equation above,
2 moles of Al reacted to 2 moles AlBr₃.
Therefore, 0.088 mole of Al will also react to produce 0.088 mole of AlBr₃.
The best explanation for the observation is that, the Pressure is proportional to temperature for a fixed volume of gas. (Option A)
From the question given above, the following data were obtained:
From the above, we can see that the volume is constant.
Applying the combine gas equation, we can conclude as follow:
P₁V₁ / T₁ = P₂V₂ / T₂
V₁ = V₂
P₁ / T₁ = P₂ / T₂
P/T = constant
P = constant × T
Thus, we can conclude that the pressure is proportional to the temperature at constant volume. This simply implies that the pressure will increase if the temperature increase and it will also decrease if the temperature decreases.
The correct answer to the question is Option A.
Learn more about gas laws: brainly.com/question/9631148
Answer:
A
Explanation:
PV=nRT
PV/nT
V/T -> (1)/(300)=(x)/(150)
x=.420
HBr
H2O
HI
Explanation:
It is known that acidic strength of hydrides of same group tends to increase when we move from top to bottom in a group. On the other hand, acidic strength of hydrides of same period elements increases when we move from left to right in a period.
As both bromine and iodine belongs to the same group. Also, selenium and oxygen are same group elements. Therefore, their acidic strength increases on moving down the group.
Therefore, we can conclude that acidic strength of given compounds from strongest to weakest is as follows.
HI > HBr > >
To rank the acids in decreasing acid strength using periodic trends, consider the size, electronegativity, and presence of lone pairs of electrons. HI is the strongest acid, followed by HBr, H2O, and H2Se.
To rank the acids in order of decreasing acid strength using periodic trends, we need to consider the size and electronegativity of the atoms. The larger the atom, the weaker the acid, and the more electronegative the atom, the stronger the acid. Additionally, we can consider the presence of lone pairs of electrons, as they increase the acidity.
#SPJ6