A pilot performs an evasive maneuver by diving vertically at 270. If he can withstand an acceleration of 9.0 's without blacking out, at what altitude must he begin to pull out of the dive to avoid crashing into the sea? y= ?m

Answers

Answer 1
Answer:

Answer:

The pilot must be began at an altitude of 826.53 m to avoid crash into the sea.

Explanation:

Given that,

Velocity = 270 m/s

Acceleration = 9.0g s

We need to calculate the altitude

Using formula of centripetal acceleration

a_(c)=(v^2)/(r)

r=(v^2)/(a_(c))

Where, v = velocity

r = altitude

a = acceleration

Put the value into the formula

r=(270^2)/(9.0*9.8)

r=826.53\ m

Hence, The pilot must be began at an altitude of 826.53 m to avoid crash into the sea.


Related Questions

What is it called when a Rock forms due to heat and pressure in the earth?
Newton's law of gravity was inconsistent with Einstein's special relativity becausethe distance, and thus the force, depends on the reference frame chosentime dilation slows the apparent acceleration, reducing the forcemass, and thus the force, depends on the reference frame chosenNewton didn't know about Einstein
The surface pressure of the atmosphere is about 14.7 psi (pounds per square inch). How many pounds per square yard does that amount to
The graph to the right shows the change in Canada‘s harvest of Atlantic cod from 1950-2004 what year shows the clearest evidence of a collapse of fishing stocks?A.1965B.1985C.1995D.2005
The type of function that describes the amplitude of damped oscillatory motion is _______. The type of function that describes the amplitude of damped oscillatory motion is _______. quadratic sinusoidal inverse exponential linear

Light from a sodium vapor lamp (λ-589 nm) forms an interference pattern on a screen 0.91 m from a pair of slits in a double-slit experiment. The bright fringes near the center of the pattern are 0.19 cm apart. Determine the separation between the slits. Assume the small-angle approximation is valid here.

Answers

Answer:

separation between the slits is 0.28 mm

Explanation:

given data

wave length λ = 589 nm = 589 × 10^(-9) m

distance between slits and the screen D = 0.91 m

fringes weight y = 0.19 cm = 0.19 × 10^(-2) m

solution

we find here the spacing between the two slits i.e d

so use here formula that is

y = λD ÷ d       .........................1

put here value we get

0.19 × 10^(-2) = (589*10^(-9)*0.91)/(d)

solve we get

d = 0.28 mm

_ is the name given to the heat energy received from the sun

Answers

Answer:

The think the answer is solar radiation.

Explanation:

here, we gain the heat from the sun through a radiation. When it travels from the sun the harmful radiation are absorbed by ozone layer and heat enegry is provided to the surface of the Earth.

hopeit helps..

A concrete highway is built of slabs 18.0 m long (at 25 °C). How wide should the expansion cracks be (at 25 °C) between the slabs to prevent buckling if the annual extreme temperatures are −32 °C and 52 °C?(the coefficient of linear expansion of concrete is 1.20 × 10 − 5 °C-1) g

Answers

To solve the problem it is necessary to apply the concepts related to thermal expansion of solids. Thermodynamically the expansion is given by

\Delta L = L_0 \alpha \Delta T

Where,

L_0 = Original Length of the bar

\Delta T= Change in temperature

\alpha= Coefficient of thermal expansion

On the other hand our values are given as,

L_0 = 18m

\alpha = 12*10^(-6)/\°C

T_2 = 52\°C

T_1= 25\°C

Replacing we have,

\Delta L = L_0 \alpha (T_2-T_1)

\Delta L = (18)(12*10^(-6))(52-25)

\Delta L = 5.832*10^(-3)m

The width of the expansion of the cracks between the slabs is 0.5832cm

The width of the expansion cracks between the slabs to prevent buckling should be 0.5832cm.

How to calculate width?

According to this question, the following information are given:

  • Lo = Original length of the bar
  • ∆T = Change in temperature
  • α = Coefficient of thermal energy

The values are given as follows:

  • Lo = 18m
  • T1 = 25°C, T2 = 52°C
  • α = 12 × 10-⁶/°C

∆L = Loα (T2 - T1)

∆L = 18 × 12 × 10-⁶ (27)

∆L = 3.24 × 10-⁴ × 18

∆L = 5.832 × 10-³m

Therefore, the width of the expansion of the cracks between the slabs is 0.5832cm.

Learn more about width at: brainly.com/question/26168065

Consider a space shuttle which has a mass of about 1.0 x 105 kg and circles the Earth at an altitude of about 200.0 km. Calculate the force of gravity that the space shuttle experiences

Answers

Final answer:

The force of gravity that the space shuttle experiences is 9.8 x 10^5 Newtons.

Explanation:

To calculate the force of gravity that the space shuttle experiences, we can use the equation F = mg, where F represents the force of gravity, m is the mass of the object, and g is the acceleration due to gravity (approximately 9.8 m/s² on Earth). In this case, the mass of the space shuttle is given as 1.0 x 10^5 kg. However, we need to convert the altitude of the shuttle into meters, so 200.0 km becomes 200,000 meters.

Now we can calculate the force of gravity:

F = (1.0 x 10^5 kg)(9.8 m/s²)

F = 9.8 x 10^5 N

Therefore, the space shuttle experiences a force of gravity of 9.8 x 10^5 Newtons.

Learn more about force of gravity here:

brainly.com/question/12753714

#SPJ3

A diverging lens has a focal length of 23.9 cm. An object 2.1 cm in height is placed 100 cm in front of the lens. Locate the position of the image. Answer in units of cm. 007 (part 2 of 3) 10.0 points What is the magnification? 008 (part 3 of 3) 10.0 points Find the height of the image. Answer in units of cm.

Answers

Answer:

Image is virtual and formed on the same side as the object, 19.29 cm from the lens.

The height of the image is 0.40509 cm

Image is upright as the magnification is positive and smaller than the object.

Explanation:

u = Object distance =  100 cm

v = Image distance

f = Focal length = -23.9 cm (concave lens)

h_u= Object height = 2.1 cm

Lens Equation

(1)/(f)=(1)/(u)+(1)/(v)\n\Rightarrow (1)/(f)-(1)/(u)=(1)/(v)\n\Rightarrow (1)/(v)=(1)/(-23.9)-(1)/(100)\n\Rightarrow (1)/(v)=(-1239)/(23900) \n\Rightarrow v=(-23900)/(1239)=-19.29\ cm

Image is virtual and formed on the same side as the object, 19.29 cm from the lens.

Magnification

m=-(v)/(u)\n\Rightarrow m=-(-19.29)/(100)\n\Rightarrow m=0.1929

m=(h_v)/(h_u)\n\Rightarrow 0.1929=(h_v)/(2.1)\n\Rightarrow h_v=0.1929* 2.1=0.40509\ cm

The height of the image is 0.40509 cm

Image is upright as the magnification is positive and smaller than the object.

Twopucksofequalmasscollideonafrictionlesssurface,asillustratedinthefigure.Immediatelyafterthe collision, the speed of the black puck is 1.5 m/s. What is the speed of the white puck immediately after the collision?

Answers

Answer:

The speed of the white puck immediately after the collision is 2.6 m/s.

Explanation:

Given that,

Two pucks are equal masses.

Speed of black puck = 1.5 m/s

According to given figure,

We need to calculate the speed of the white puck immediately after the collision

Using law of conservation of momentum

mv=m_(1)v_(1)\cos\theta+m_(2)v_(2)\cos\theta

Put the value into the formula according to figure

m*3=m* v_(1)*\cos30+m*1.5*\cos60

3m=0.866m v_(1)+0.75m

v_(1)=(3-0.75)/(0.866)

v_(1)=2.6\ m/s

Hence, The speed of the white puck immediately after the collision is 2.6 m/s.