Answer:
The pilot must be began at an altitude of 826.53 m to avoid crash into the sea.
Explanation:
Given that,
Velocity = 270 m/s
Acceleration = 9.0g s
We need to calculate the altitude
Using formula of centripetal acceleration
Where, v = velocity
r = altitude
a = acceleration
Put the value into the formula
Hence, The pilot must be began at an altitude of 826.53 m to avoid crash into the sea.
Answer:
separation between the slits is 0.28 mm
Explanation:
given data
wave length λ = 589 nm = 589 × m
distance between slits and the screen D = 0.91 m
fringes weight y = 0.19 cm = 0.19 × m
solution
we find here the spacing between the two slits i.e d
so use here formula that is
y = λD ÷ d .........................1
put here value we get
0.19 × =
solve we get
d = 0.28 mm
Answer:
The think the answer is solar radiation.
Explanation:
here, we gain the heat from the sun through a radiation. When it travels from the sun the harmful radiation are absorbed by ozone layer and heat enegry is provided to the surface of the Earth.
hopeit helps..
To solve the problem it is necessary to apply the concepts related to thermal expansion of solids. Thermodynamically the expansion is given by
Where,
Original Length of the bar
= Change in temperature
= Coefficient of thermal expansion
On the other hand our values are given as,
Replacing we have,
The width of the expansion of the cracks between the slabs is 0.5832cm
The width of the expansion cracks between the slabs to prevent buckling should be 0.5832cm.
According to this question, the following information are given:
The values are given as follows:
∆L = Loα (T2 - T1)
∆L = 18 × 12 × 10-⁶ (27)
∆L = 3.24 × 10-⁴ × 18
∆L = 5.832 × 10-³m
Therefore, the width of the expansion of the cracks between the slabs is 0.5832cm.
Learn more about width at: brainly.com/question/26168065
The force of gravity that the space shuttle experiences is 9.8 x 10^5 Newtons.
To calculate the force of gravity that the space shuttle experiences, we can use the equation F = mg, where F represents the force of gravity, m is the mass of the object, and g is the acceleration due to gravity (approximately 9.8 m/s² on Earth). In this case, the mass of the space shuttle is given as 1.0 x 10^5 kg. However, we need to convert the altitude of the shuttle into meters, so 200.0 km becomes 200,000 meters.
Now we can calculate the force of gravity:
F = (1.0 x 10^5 kg)(9.8 m/s²)
F = 9.8 x 10^5 N
Therefore, the space shuttle experiences a force of gravity of 9.8 x 10^5 Newtons.
#SPJ3
Answer:
Image is virtual and formed on the same side as the object, 19.29 cm from the lens.
The height of the image is 0.40509 cm
Image is upright as the magnification is positive and smaller than the object.
Explanation:
u = Object distance = 100 cm
v = Image distance
f = Focal length = -23.9 cm (concave lens)
= Object height = 2.1 cm
Lens Equation
Image is virtual and formed on the same side as the object, 19.29 cm from the lens.
Magnification
The height of the image is 0.40509 cm
Image is upright as the magnification is positive and smaller than the object.
Answer:
The speed of the white puck immediately after the collision is 2.6 m/s.
Explanation:
Given that,
Two pucks are equal masses.
Speed of black puck = 1.5 m/s
According to given figure,
We need to calculate the speed of the white puck immediately after the collision
Using law of conservation of momentum
Put the value into the formula according to figure
Hence, The speed of the white puck immediately after the collision is 2.6 m/s.