Garza travels at a speed of 5 m/s. How long will it take him to travel 640 m?

Answers

Answer 1
Answer:

Answer:

128 s

Explanation:

The distance, speed and time are related as;

Distance=Speed* Time

Given that the speed = 5 m/s

Distance = 640 m

Time = ?

So,

Distance=Speed* Time

640\ m=5\ m/s* Time

Time=\frac {640\ m}{5\ m/s}=128\ s

Thus, Garza takes 128 s to travel 640 m at 5 m/s speed.


Related Questions

You have two identical pure silver ingots. You place one of them in a glass of water and observe it to sink to the bottom. You place the other in a container full of mercury and observe that it floats. Comparing the buoyant forces in the two cases you conclude that a.) the buoyant force in water is smaller than in mercury b.) the buoyant force in the water is larger than that in mercury c.) the buoyant force in the water is zero and that in mercury is non - zero d.) the buoyant force in the water is equal to that in mercury e.) no conclusion can be made about the respective values of the buoyant forces
In a solution such as salt water, the component that does the dissolving is called the?
Bryan Allen pedaled a human-powered aircraft across the English Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 1979.(a) He flew for 169 min at an average velocity of 3.53 m/s in a direction 45° south of east. What was his total displacement?(b) Allen encountered a headwind averaging 2.00 m/s almost precisely in the opposite direction of his motion relative to the Earth. What was his average velocity relative to the air?(c) What was his total displacement relative to the air mass?
A 4,667 kHz AM radio station broadcasts with a power of 84 kW. How many photons does the transmitting antenna emit each second.
A 72.0-kg person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is located 0.800 m from axis of the frictionless hinges of the door. The door begins to rotate with an angular acceleration of 2.00 rad/s 2 . What is the moment of inertia of the door about the hinges?

A 4.0-m-long, 500 kg steel beam extends horizontally from the point where it has been bolted to the framework of a new building under construction. A 70 kg construction worker stands at the far end of the beam.What is the magnitude of the torque about the bolt due to the worker and the weight of the beam?

Answers

Answer:

T=12544 N*m

Explanation:

Given

L=4.0m

ms=500kg

mw=70kg

Torque is the force in a distance the relation is proportional so the torque of weight first is:

Ts = Fs*d

Ts = ms*g*L

Ts = 500kg*9.8m/s^2*2m

Ts = 9800 N*m

now torque of the worker

Tw = Fw*d

Tw = 70kg*9.8m/s^2*4m

Tw = 2744 N*m

Torque net is

Tnet = Tw+Ts

Tnet= 2744 + 9800 =12544 N*m

Final answer:

The total torque about the bolt due to the worker and the weight of the beam is 12544 Nm. This is found by adding the torque due to the beam and the worker which can be calculated using their weights and their distance from the pivot point (bolt).

Explanation:

The key to solving this question is understanding torque, which in physics represents the rotational effect of a force. Torque is calculated using the formula τ = r x F, where τ is the torque, r is the distance from the pivot point, and F is the force applied.

In this case, there are two forces to consider: the weight of the beam and the weight of the worker. Both of these can be calculated using the formula for weight (F = m*g), where m is mass and g is gravitational acceleration, which is approximately 9.8 m/s^2 on Earth. The weight of the beam is therefore 500 kg * 9.8 m/s^2 = 4900 N, and the weight of the worker is 70 kg * 9.8 m/s^2 = 686 N.

The distance from the pivot (bolt) for the beam's weight is considered to be the midpoint of the beam, so it is 4.0 m / 2 = 2.0 m. For the worker, r equals the full length of the beam, which is 4.0 m. The total torque can be calculated by adding the torque due to the beam and the worker. Therefore, the total torque τ = (2.0 m * 4900 N) + (4.0 m * 686 N) = 9800 Nm + 2744 Nm = 12544 Nm.

Learn more about Torque here:

brainly.com/question/25708791

#SPJ11

How many meters will a car travel if its speed is 45 m/s in an interval of 11 seconds?Question 2 options:

A) 450 meters


B) 495 meters


C) 4.09 meters


D) 498 meters

Answers

Data given:

V=45m/s

t=11s

Δx=?

Formula needed:

V=Δx/t

Solution:

Δx=v×t

Δx=45m/s×11s

Δx=495m

According to my solution B) is the most accurate

495 is the answer !!

You have a grindstone (a disk) that is 105.00 kg, has a 0.297-m radius, and is turning at 71.150 rpm, and you press a steel axe against it with a radial force of 46.650 N. Assuming the kinetic coefficient of friction between steel and stone is 0.451. How many turns will the stone make before coming to rest?

Answers

Answer:

3.27 turns

Explanation:

To find how many turns (θ) will the stone make before coming to rest we will use the following equation:

\omega_(f)^(2) = \omega_(0)^(2) + 2\alpha*\theta

Where:

\omega_(f): is the final angular velocity = 0

\omega_(0): is the initial angular velocity = 71.150 rpm

α: is the angular acceleration

First, we need to calculate the angular acceleration (α). To do that, we can use the following equation:

\alpha = (\tau)/(I)

Where:

I: is the moment of inertia for the disk

τ: is the torque  

The moment of inertia is:

I = (mr^(2))/(2)

Where:

m: is the mass of the disk = 105.00 kg

r: is the radius of the disk = 0.297 m

I = (105.00 kg*(0.297 m)^(2))/(2) = 4.63 kg*m^(2)

Now, the torque is equal to:

\tau = -F x r = -\mu*F*r

Where:

F: is the applied force = 46.650 N      

μ: is the kinetic coefficient of friction = 0.451

\tau = -\mu*F*r = -0.451*46.650 N*0.297 m = -6.25 N*m

The minus sign is because the friction force is acting opposite to motion of grindstone.    

Having the moment of inertia and the torque, we can find the angular acceleration:

\alpha = (-6.25 N*m)/(4.63 kg*m^(2)) = -1.35 rad/s^(2)

Finally, we can find the number of turns that the stone will make before coming to rest:

0 = \omega_(0)^(2) + 2\alpha*\theta  

\theta = -((\omega_(0))^(2))/(2\alpha) = -((71.150 (rev)/(min))^(2))/(2*(-1.35 (rad)/(s^(2)))*(1 rev)/(2\pi rad)*((60 s)^(2))/((1 min)^(2))) = 3.27 rev = 3.27 turns                        

I hope it helps you!

The planet uranus is tilted nearly on its side so that its axis or rotation is only 8 degress abway from its orbit plane. if you lived at latitude 45 degrees on uranus for what fraction of the uranian year would answer?

Answers

The rotation of Uranus, like that of Venus, is retrograde and its axis of rotation is inclined almost ninety degrees above the plane of its orbit. During its orbital period of 84 years one of the poles is permanently illuminated by the Sun while the other remains in the shade. Exactly its rotation period is equivalent to 17 hours and 14 Earth minutes and its translation period is equivalent to 84 years, 7 days and 9 Earth hours.

Only a narrow band around the equator experiences a rapid cycle of day and night, but with the Sun very low on the horizon as in the polar regions of the Earth. On the other side of the orbit of Uranus, the orientation of the poles in the direction of the Sun is inverse. Each pole receives about 42 years of uninterrupted sunlight, followed by 42 years of darkness. Therefore an observer at latitude of 45 degrees in Uranus will probably experience a long winter night that is equivalent to one third of the year uranium.

In part (a), suppose that the box weighs 128 pounds, that the angle of inclination of the plane is θ = 30°, that the coefficient of sliding friction is μ = 3 /4, and that the acceleration due to air resistance is numerically equal to k m = 1 3 . Solve the differential equation in each of the three cases, assuming that the box starts from rest from the highest point 50 ft above ground. (Assume g = 32 ft/s2 and that the downward velocity is positive.)

Answers

Answer:

v(t) = 21.3t

v(t) = 5.3t

v(t) = 48 -48 e ^{ (t)/(9)}

Explanation:

When no sliding friction and no air resistance occurs:

m(dv)/(dt) = mgsin \theta

where;

(dv)/(dt) = gsin \theta , 0 < \theta <  ( \pi)/(2)

Taking m = 3 ; the differential equation is:

3 (dv)/(dt)= 128*(1)/(2)

3 (dv)/(dt)= 64

(dv)/(dt)= 21.3

By Integration;

v(t) = 21.3 t + C

since v(0) = 0 ; Then C = 0

v(t) = 21.3t

ii)

When there is sliding friction but no air resistance ;

m (dv)/(dt)= mg sin \theta - \mu mg cos \theta

Taking m =3 ; the differential equation is;

3 (dv)/(dt)=128*(1)/(2) -(√(3) )/(4)*128*(√(3) )/(4)

(dv)/(dt)= 5.3

By integration; we have ;

v(t) = 5.3t

iii)

To find the differential equation for the velocity (t) of the box at time (t) with sliding friction and air resistance :

m (dv)/(dt)= mg sin \theta - \mu mg cos \theta - kv

The differential equation is :

= 3 (dv)/(dt)=128*(1)/(2) - ( √( 3))/(4)*128 *( √( 3))/(2)-(1)/(3)v

= 3 (dv)/(dt)=16 -(1)/(3)v

By integration

v(t) = 48 + Ce ^{(t)/(9)

Since; V(0) = 0 ; Then C = -48

v(t) = 48 -48 e ^{ (t)/(9)}

A speed skater moving across frictionless ice at 8.8 m/s hits a 6.0 m -wide patch of rough ice. She slows steadily, then continues on at 5.8 m/s . What is her acceleration on the rough ice?

Answers

A speed skater moving across frictionless ice at 8.8 m/s hits a 6.0 m -wide patch of rough ice. Her acceleration on the rough ice is -3.65 m/s².  

v² - u² = 2 a ∆x, where u and v are initial and final velocities, respectively; a is acceleration.

and ∆x is the distance traveled (because the skater moves in only one direction).

Thus, (5.8 m/s)² - (8.8 m/s)² = 2 a (6.0 m)

a = ((5.8 m/s)² - (8.8 m/s)²) / (12 m)

a = -3.65 m/s².

Thus, A speed skater moving across frictionless ice at 8.8 m/s hits a 6.0 m -wide patch of rough ice. Her acceleration on the rough ice is -3.65 m/s².  

Learn more about Acceleration, refer to the link:

brainly.com/question/2303856

#SPJ3

Recall that

v² - u² = 2 ax

where u and v are initial and final velocities, respectively; a is acceleration; and ∆x is the distance traveled (because the skater moves in only one direction).

So we have

(5.8 m/s)² - (8.8 m/s)² = 2 a (6.0 m)

a = ((5.8 m/s)² - (8.8 m/s)²) / (12 m)

a = -3.65 m/s²