Give a quantitative definition of being in contact.

Answers

Answer 1
Answer:

Two things are said to be in contact if the smallest distance between a point in one of them and a point in the other one is zero.


Related Questions

A projectile is launched at some angle to the horizontal with some initial speed vi, and air resistance is negligible.(a) Is the projectile a freely falling body?Yes or No(b) What is its acceleration in the vertical direction? (Let up be the positive direction.)____? m/s2(c) What is its acceleration in the horizontal direction?
1. Towards the end of a 400m race, Faisal and Edward are leading and are both running at 6m/s. While Faisal is 72m from the finish line Edward is 100m from the finish line. Realising this and to beat Faisal, Edward decides to accelerate uniformly at 0.2 m/s2 until the end of the race while Faisal keeps on the same constant speed. Does Edward succeed in beating Faisal?
A local meteorologist reports the day’s weather. "Currently sunny outside, 34°F. Skies will become overcast later this afternoon, as temperatures drop to 25°F, with windy conditions out of the north at 10–15 miles per hour. Radar indicates 2–3 inches of snow expected to fall later tonight.” Which information is qualitative? These are non-numerical, descriptive data. These are numerical data that have been measured. “sunny” “25°F” “2–3 inches of snow” “10–15 miles per hour”
Solve for x–30 = 5(x + 1)
Explain what happent to the pressure exerted by an object when the area over which it is exerted:a) increase b) decrease​

If you have two substances, one with a density of 2.0 g/cm3 and one with a density of 1.3 g/cm3 and you combined them, which one would float on topother and why?

Answers

Explanation:

Assuming the substances are fluids that do not mix, the lighter substance (ρ = 1.3 g/cm³) will float on top of the heavier substance (ρ = 2.0 g/cm³).  This is due to Archimedes' Principle, which explains buoyancy.

Consider a vertical elevator whose cabin has a total mass of 800 kg when fully loaded and 150 kg when empty. The weight of the elevator cabin is partially balanced by a 400-kg counterweight that is connected to the top of the cabin by cables that pass through a pulley located on top of the elevator well. Neglecting the weight of the cables and assuming the guide rails and the pulleys to be frictionless, determine (a) the power required while the fully loaded cabin is rising at a constant speed of 1.2 m/s and (b) the power required while the empty cabin is descending at a constant speed of 1.2 m/s. What would your answer be to (a) if no counterweight were used? What would your answer be to (b) if a friction force of 800 N has developed between the cabin and the guide rails?

Answers

Answer:

Part a)

P = 4.71 * 10^3 Watt

Part b)

P = 2.94 * 10^3 W

Part c)

P = 9.4 * 10^3 W

Part d)

P = 3.9 * 10^3 W

Explanation:

Part a)

When cabin is fully loaded and it is carried upwards at constant speed

then we will have

net tension force in the rope = mg

T = (800)(9.81)

T = 7848 N

now it is partially counterbalanced by 400 kg weight

so net extra force required

F = 7848 - (400 * 9.81)

F = 3924 N

now power required is given as

P = Fv

P = 3924 (1.2)

P = 4.71 * 10^3 Watt

Part b)

When empty cabin is descending down with constant speed

so in that case the force balance is given as

F + (150 * 9.8) = (400 * 9.8)

F = 2450 N

now power required is

P = F.v

P = (2450)(1.2)

P = 2.94 * 10^3 W

Part c)

If no counter weight is used here then for part a)

F = 7848 N

now power required is

P = F.v

P = 7848 (1.2)

P = 9.4 * 10^3 W

Part d)

Now in part b) if friction force of 800 N act in opposite direction

then we have

F + (150 * 9.8) = 800 +(400 * 9.8)

F = 3250 N

now power is

P = (3250)(1.2)

P = 3.9 * 10^3 W

On average, both arms and hands together account for 13 % of a person's mass, while the head is 7.0% and the trunk and legs account for 80 % . We can model a spinning skater with her arms outstretched as a vertical cylinder (head, trunk, and legs) with two solid uniform rods (arms and hands) extended horizontally. Suppose a 61.0-kg skater is 1.80 m tall, has arms that are each 70.0 cm long (including the hands), and a trunk that can be modeled as being 35.0 cm in diameter. The skater is initially spinning at 70.0 rpm with his arms outstretched.Required:
What will his angular velocity be (in rpm) when he pulls in his arms until they are at his sides parallel to his trunk?

Answers

Final answer:

To find the final angular velocity when the skater pulls in his arms, we use the conservation of angular momentum.

Explanation:

To find the final angular velocity when the skater pulls in his arms, we can make use of the conservation of angular momentum. Initially, the skater's arms are outstretched, and the moment of inertia can be calculated using the parallel axis theorem. After the skater pulls in his arms, we can calculate the new moment of inertia using the same theorem. Equating the initial and final angular momentum values, we can solve for the final angular velocity.

Learn more about Angular velocity here:

brainly.com/question/30733452

#SPJ12

Final answer:

The problem involves the concept of conservation of angular momentum. The skater's spinning speed will increase when they pull their arms in. For a precise value of the final velocity, a complex calculation taking into account body mass distribution is needed.

Explanation:

This question involves the principle of conservation of angular momentum, which states that the angular momentum of an object remains constant as long as no external torques act on it. The total initial angular momentum of the skater spinning with outstretched arms is equal to his final angular momentum when he pulls his arms in.

Calculating the skater's initial and final angular momentum, you can then solve for his final velocity.

However, note that the calculation needs to take into account the skater's mass distribution. Specifically, we need to consider the percentage distributions for the arms/hands (13%), head (7%) and trunk/legs (80%), and integrate these over the skater's body.

This can result in a significantly complex calculation if done accurately, involving calculus level mathematics. However, using the qualitative knowledge that the skater's spinning speed will increase when they pull their arms in, it's reasonable to estimate, considering the mass distribution, the final velocity will be somewhere near 2 to 3 times the original rpm. But for an exact value, a detailed and complex calculation is needed.

Learn more about Conservation of Angular Momentum here:

brainly.com/question/32554788

#SPJ2

List Five examples from daily life in which you see periodic motion caused by a pendulum(Marking Brainliest)

Answers

Answer:

by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.

Explanation:

A train travels 64 kilometers in 5hours and then 93 kilometers in 2hours. What is it’s average speed?

Answers

I believe the answer is about 22.43 kilometers per hour. However I am not 100% sure.

How I got this: first you add 64 and 93, then 5 and 2. That would leave you with the kilometers traveled (157) over the number of hours (7). You’d have to divide, which would leave you with an estimated 22.4285. Round to the nearest hundredth and you get 22.43 . Please correct me if I’m wrong!

What occurs when a light wave enters a substance and its speed suddenly slowsdown?
refraction
Olightening
Oreflection
the vacuum effect

Answers

Final answer:

Refraction occurs when a light wave enters a substance and its speed suddenly slows down.


Explanation:

When a light wave enters a substance and its speed suddenly slows down, it undergoes a phenomenon known as refraction. Refraction occurs due to the change in speed and direction of light as it passes from one medium to another with a different refractive index. The change in speed causes the light wave to bend, resulting in a change in its path.


Learn more about Refraction here:

brainly.com/question/32684646